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U Though frequency selective surfaces have been investigated for over two hundred years,
accurate numerical analysis of these surfaces is still in its infancy. Past models assumed that the
surface is periodic, infinite in extent, and illuminated by a uniform plane wave. In many practical
applications, however, these assumptions may be invalid. In this thesis, the method of moments is
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applicable to finite frequency selective surfaces, a general multilayer Green's function is developed
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can be computationally intensive, several strategies are discussed for efficiently filling the matrices
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comparison of several adaptive numerical integration rot,: ,,s for integrating functions which are
singular or sharply peaked.

The effects of finite dimensions are evaluated by comparing the induced currents and
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U ABSTRACTI
Though frequency selective surfaces have been investigated for over two hundred years,

I accurate numerical analysis of these surfaces is still in its infancy. Past models assumed that the

surface is periodic, infinite in extent, and illuminated by a uniform plane wave. In many practical

applications, however, these assumptions may be invalid. In this thesis, the method of moments is

applied in the spectral domain to model finite frequency selective surfaces, to study the effects of

non-plane-wave sources, and to explore the advantages of gradually adjusting the lattice and shape

3 of the element in a nonuniform frequency selective surface for non-plane-wave excitation.

In pursuing these goals, the following topics are discussed in some detail. First, because of

the limited interest in free-standing surfaces, and because the usual cascade approach is not

applicable to finite frequency selective surfaces, a general multilayer Green's function is developed

in order to incorporate an arbitrary dielectric support. Second, because the analysis of finite arrays

3 can be computationally intensive, several strategies are discussed for efficiently filling the matrices

generated by the application of the spectral-domain method of moments. Third, a few methods for

I handling the singularities of the spectral Green's function are briefly mentioned, including a

comparison of several adaptive numerical integration routines for integrating functions which are

singular or sharply peaked...

3 The effects of finite dimensions are evaluated by comparing the induced currents and

reflection coefficients for the finite and periodic arrays. The effects can be classified into at least

U two frequency regimes. At frequencies that are near the first resonant frequency of the element,

the edge plays a relatively minor role in influencing the scattered fields. At lower frequencies,

however, an edge-to-edge resonance can be excited on the array, which cannot be predicted by

I periodic models.
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I CHAPTER 1

I INTRODUCTION

The problem of predicting electromagnetic scattering from periodic structures has

been studied for well over a century. As early as 1786, David Rittenhouse, an American

3 physicist, published his experiments on the diffraction of light through a periodic grating

[1, 2]. Fraunhofer constructed some of the first practical diffraction gratings in 1823 to

3 split a beam of light into its various colors. At lower frequencies, Hertz utilized a metallic

grid in his experiments in 1889. Within a few years, several theoretical papers had

I appeared attempting to explain Hertz's experiments, the first by J. J. Thompson in 1893

[3]. From that time to the present, the problem has received intermittent attention, driven

primarily by the discovery of new applications, the development of printed circuit

techniques, and the advent of the high-speed digital computer. The last of these factors has

permitted a wide range of complicated geometries to be treated efficiently and accurately

I using a handful of systematic techniques.

At microwave frequencies, the two-dimensional versions of these surfaces are

generated by replicating a conducting patch or aperture in a periodic fashion along two

surface coordinates, which may or may not be orthogonal. The shape of the generating

patch or aperture is used, to some extent, to control the frequency response of the surface,

I for example, to increase the bandwidth or to make the frequency response less sensitive to

incident angle. Special considerations apply to circular polarization; otherwise, the element

shape is arbitrary.

As a function of frequency, electromagnetic scattering from periodic surfaces is

characterized by an infinite number of alternating reflection and transmission bands. AtI
I
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certain frequencies, a periodic array of printed elements can reflect an incident field as

though it were a solid perfectly-conducting sheet. At other frequencies, the surface is

perfectly transparent. It is this property that is most often used in satellite antenna

applications, where a periodic surface is used to generate a second focus for a parabolic

reflector. It is also the property that gives it the name frequency selective surface (FSS). 3
Nearly all of the theoretical analyses of frequency selective surfaces has been based

on the assumption that the surface is infinite in extent along both coordinate axes. For I
plane-wave incidence, the cell currents differ only by the known progressive phase shift of

the incident field; thus, the fundamental unknown is either the current density or aperture

field on a single unit cell. When frequency selective surfaces are implemented in real 3
systems, they are finite, and due to their different environments, currents flowing in the

interior regions of the surface can be quite different from currents flowing near the edges. I
The goal of this research is to study the effects of truncating a periodic surface to a finite 3
size.

A frequency selective surface that has been truncated to finite dimensions is not 3
periodic. Unless otherwise indicated by the context, the term "periodic surface" will

always be used to refer to the infinite planar suface, which is (infinitely) periodic in one I
dimension (in the case of strip gratings) or two dimensions (in the case of true two-

dimensional elements). The term "dichroic surface" will be avoided, since many

applications are concerned with more than two frequencies. 5
This thesis is written from the problem-solver's point of view. Most of the emphasis

is on the formulation of the equations and on the considerations that are essential to

efficiently and accurately solve those equations on the computer. Less emphasis will be

placed on physical interpretation of the results. This thesis is not intended to be a survey of

the theory of periodic arrays. A complete discussion of the properties of the Floquet space 3
harmonics, surfaces that are periodic in other separable coordinate systems, the application

of Babinet's principle to complementary screens, iterative solutions of the scattering 3
I
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equations via the conjugate gradient method, and scattering matrices for cascading arbitrary

dielectric layers and layers of printed elements are all treated elsewhere and will not be

3 repeated here t2, 4]. The scope of this thesis includes only material that directly pertains to

the analysis of finite frequency selective surfaces, or material that is not readily available

* elsewhere.

The thesis is organized as follows: Chapter 2 introduces the geometries considered in

the body of the text, identifies the fundamental unknown in each case, and summarizes the

3 relationships between the fundamental unknowns and the total current density in the plane

of the printed surface. Chapter 3 provides a review of the spectral-Galerkin technique,

3 Iwith a detailed look at the derivation of the spectral-domain Green's function for an

arbitrary N-layer dielectric medium. Chapter 4 highlights some of the theoretical and

Unumerical considerations that are essential to implementing the spectral-Galerkin equation

3 on the computer. A few representative numerical results are presented in Chapter 5, the

response of frequency selective surfaces to arbitrary incident fields, such as the near field

of an electromagnetic horn, is the subject of Chapter 6, and Chapter 7 summarizes the main

conclusions and suggests directions for future work.I
I
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CHAPTER 2

REPRESENTATION OF FUNCTIONS IN PERIODIC AND APERIODIC
DOMAINS

A few years ago, the spectral-domain formulation of the method of moments was I
developed and successfully applied to a number of different problems. Although the

connection is not always clear, many of the formulations for predicting electromagnetic

scattering from periodic surfaces that directly make use of the fact that the scattered field is

composed of a discrete spectrum of plane waves are essentially equivalent to the method

presented here. Some of the foundational papers, for example, Montgomery [5], Chen [6], I
Chen [7], and Tsao and Mittra [8], have very different points of view, terminology, and

notation, but they all arrive at the same fundamental equation, and solve it using the same

techniques. In the next chapter, we will take a look at the spectral-Galerkin technique as it

applies to a fairly broad class of FSS-type problems, but first, in order to avoid repetition,

it is necessary to review some basic concepts on representing functions in periodic and 3
aperiodic domains

One of the most useful means of evaluating the effects of truncating a periodic surface

is to compare the currents and scattered fields obtained for the finite problem with the

corresponding results for the periodic problem. The amount that the two results differ is

entirely due to the finite versus infinite character of the two problems. However, in order I
to assign all of the difference to the truncation effect, it is necessary to solve both problems,

the finite problem and the periodic problem, using similar approximations, particularly if

one is interested in comparing, for example, the induced currents on the two structures.

For this reason, both finite and periodic surfaces will be considered, concentrating more

heavily on the finite-FSS problem. I

I



!5

Having stated that the subject of the thesis is electromagnetic scattering from finite

frequency selective surfaces, the subject matter is still too broad and varied to allow a

3 comprehensive treatment. The problems considered here have been restricted by the

following simplifying assumptions. First, partially due to the fact that the method of

3 solution is a Fourier-transform technique, only planar geometries are considered. The

problem of predicting the scattered fields from a frequency selective surface which has true

two-dimensional curvature, such as a parabolic dish or hyperbolic subreflector, is still a

3 challenging problem computationally, and one which has only been modeled using crude

approximations or by relying heavily on experimental data. Cwik has discussed surfaces

which are periodic in cylindrical and spherical coordinate systems [2], and he has also

considered finite and periodic strip gratings on the surfaces of infinite cylinders [9].

I However, the general problem, for the most part, has not been addressed - nor will it be

addressed here.

Second, although the method is not limited to single layers of metallization, for the

3 purposes of this thesis, the geometry considered is a single layer of printed elements

embedded in an N-layer dielectric medium, where each layer is assumed to be uniform,

3 homogeneous, and characterized by the complex-valued relative dielectric permittivity r.

Under these assumptions, the problems of interest here fall into four or five general

categories, which are treated in order of their computational difficulty.

3 As a corollary to the uniqueness theorem, the fundamental unknown in the integral

equation can be chosen as either the induced electric current density on the metallized

3 portions of the surface or as the tangential electric field in the apertures. In the periodic

problem, the choice is somewhat arbitrary, but it is usually computationalIy more

convenient to choose as the unknown that quantity that occupies the least physical area. In

3 the finite-, ...y problem, the choice is more clear. In the case in which a finite array of

aperture,., L..,sumed to exist in an infinite conducting sheet, the idea of representing the

3 current den-:, over the infinite conducting sheet does not seem to be an option. In the

I
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same way, for a surface formed by printing a finite number of conducting patches on an

infinite dielectric substrate, choosing the tangential electric field as the fundamental

unknown would seem to be impractical, since this too would involve representing the

unknown over an infinite area. All of the finite-FSS examples that we will consider are of

the second kind, where the metallized region is assumed to be finite in some sense, and I
hence, the induced current density on the surface will always be taken as the fundamental

unknown. U
2.1 Periodic Strip Grating

The first two types of problems that are considered are strip gratings [9- 121: infinitely 3
long layers of metallization printed on a dielectric substrate, as shown in Fig. 2.1.

Y

(a)

ZI
(b) U

I
Figure 2. 1. Strip grating geometry: (a) top view, (b) side view.

I
I
I
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These are one-dimensional structures in the sense that the geometry is independent of one

of the surface coordinates. As a result, they are among the simplest structures of any

3 practical interest.

In the first case, we will consider a periodic grating, in which a unit strip is replicated

3 in a periodic fashion an infinite number of times in the direction perpendicular to the strips.

The metallized areas are assumed to be zero-thickness, perfectly-conducting regions of

width a and periodicity b, embedded in N uniform homogeneous dielectric layers,

3 described by complex relative permittivities eri and thicknesses ti.

In order to determine how this structure scatters an incident electromagnetic field, the

3 objective is to first write an expression for the induced current density on the entire surface

in terms of the current on a single element. If the incident field is assumed to be a plane

I wave incident from the direction (Oi,(Oi), derived from the magnetic and electric vector

potentials A and F, where

A = d ik~ ~+ kz)

3F = . x + kyy + kz) (2.1)

and,

3k X = k0 sinOi cosoi

ky = k0 sin i sinoi (2.2)

Sk z = k0 cos0i,

then the y variation of the induced surface current will have the same exponential phase

dependence as the incident field. Adopting the notation ot Papoulis [13], the x and y

3 components of the total induced current density, Jx (x,y) and Jy (x,y), can be written in the

form,

Jx (x,y) = Jx() * I 8(x - mb ) elJkc eJkiy,

Jy(x'y) = Jyo(X) * 83(x - mb ) e k' x }eJkYy, (2.3)

I 0 0 --0



8 3
or in vector notation,

J(x,y) = {Jo), 8(x - mb) eikx } ejkyy. (2.4)

With the y dependence removed, the remainder of the total current density, in oraces, is a

function of x only. It can therefore be represented as a one-dimensional convolution of

JO(x), the current density on the center strip along the cut y = 0, and an infinite, periodic 3
sequence of delta functions, which are weighted by the progressive phase shift of the

incident field. I
The representation given by Eqs. (2.3) and (2.4) is not unique. Another possibility

would have been to factor out the phase shift due to the incident field in both x and y, I

leaving a periodic function of x,

J(x'y) ={ JOWx 8(x - mb) }Ik~ eik Yy. (2.5)1

The difference between the two representations is usually insignificant, but it is possible to 3
imagine situations in which one representation might offer some advantages over the other.

Anticipating the need for the Fourier transform of J(xy), which is defined as 3
00 00

-(a,f3) = f fx,y) e-m e-jPY dx dy , (2.6) 3
from Eq. (2.4), 4

J(a,fp) = -b- J 0(a)= 6(a - am) (5(0 - ky), (2.7a)
M = -00U

a m = + kx, (2.7b) 3
where J 0 (a), with a single argument, denotes a Fourier transform with respect to x only,

and the tilde "-" is used to denote a Fourier-transformed quantity. Equation (2.7a)

illustrates a common feature of all periodic surfaces: when a periodic surface is illuminated

I
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by an incident plane wave, the spectrum of its induced current is discrete. As a

consequence, the only scattered fieldq 3bve and helnw the surface that satisfy the

boundary conditions in the plane of the strips are plane waves whose transverse wave

numbers are equal to am and ky. Note that we have incidentally derived the Floquet space

3 harmonics - an orthogonal set of plane-wave fields whose transverse phase constants am

are given by Eq. (27b).

1 2.2 Finite Strip Grating

Much of what has already been said about the periodic strip grating applies equally

3 well to the finite strip grating. The emphasis, therefore, will be on the main differences

between the two problems. The geometry is illustrated in Fig. 2.1, where a finite number

Uof strips is assumed to exist at regular intervals along the x axis. In this case, the

representation describing the relationship between J(x,y) and Jo(x,y) is trivial, but it is still

necessary to observe the distinction between the two functions. For the plane wave

3 described by Eqs. (2.1) and (2.2),

J(x,y) = J0 (x) eky, " (2.8)

I where JO(x) is the current density on the entire surface along the cut y = 0. Unlike the

previous case, the currents flowing on the strips are no longer related by a simple phase

shift, and in general, the current on each strip must be treated as unknown.

3 Taking the Fourier transform of Eq. (2.8) leads to

J(a,/3) - 27rj 0(a) (P3 - ky), (2.9)

U where, as before, .o(a) with a single argument denotes a Fourier transform with respect to

* x only.

I
U
I
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2.3 Periodic Two-Dimensional Structures

In Section 2.1, a one-dimensional structure was defined to be one in which the 3
surface geometry is independent of one of the surface coordinates. Next, the treatment is

extended to include two-dimensional surfaces, i.e., those, such as the one shown in Fig. I
2.2, which are functions of both of the surface coordinates.

Y

n = 2 --..-..--..-.. ..- --

n =1 -- --------
1 .1 7 S I I

n =0 -- X .... 7--'-- 7D
I I I In=11

y= (X:-m Fr 7) tan (f2

Figure 2.2. A two-dimensional periodic surface.

In the general case, the surface is considered to be periodic in skewed coordinates,I

with periodicities T77, and T772 along the 77, and 772 axes, respectively. A unit cell can be

defined as the region -Tx/2 < x: < Tz2, -Ty/2!5 y:!:_ Ty/2, as in the simple brick arrangement

of Fig. 2.3. The unit cell is the minimum area of the FSS that can be reproduced in aI

periodic fashion to generate the entire FSS, including both aperture and patch regions
inside the rectangular boundary.I

The unit cell is not unique and may be chosen to suit the particular geometry ofI

interest. However, it is not always possible to choose the unit cell such that exactly one

element is enclosed within its boundaries. The two surfaces shown in Fig. 2.4 are

common examples of this situation: parts of at least three elements must be enclosed within

II
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the unit cell, and care must be taken to ensure that the currents are continuous across these

I fictitious mathematical boundaries.

I
Y T x

Ty =Trl sin Q

3 Figure 2.3. Simple brick arrangement where each unit cell contains exactly
one element.

I

I

Figure 2.4. Common geometries for which the unit cell encloses parts of at
least three elements.

I Although the concept of a unit cell is general enough to describe any periodic surface

3 of the type shown in Fig. 2.2, it is much too restrictive a notion in practice. There is

nothing inherent to the problem that requires defining a unit cell. For isolated elements,

I such as those shown in Figs. 2.2 - 2.4, it is always possible to represent the current

density on the entire surface in terms of the current on a single element of the array. In this

case, the terminology "unit cell" is sometimes used (very loosely) to denote a single

3 element. The context will usually indicate the meaning.

I
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It is always possible to choose the x axis of a Cartesian coordinate system along the

77 axis of the FSS. Then the diagonal lines in Fig. 2.2, m = 0, +1, ±2, etc., are given by I
y = (x mTql ) tan 2. I

Assuming that the incident field is a plane wave described by Eqs. (2.1)-(2.2), the induced

current density J(xy) on the entire surface can be written in the form, I

J(x,y) = J 0 (x,y) * { 8(x - y cotQ - mT71)eJkX 8(y - nTr 2sinS2 )e'y ,
(2.10) I

~where J0(x,y) is the current density on a single element of the surface. Except for the

phase-shift terms, the quantity in braces is a two-dimensional array of Dirac delta functions

located at the points of intersection of the lines m,n = 0, ±1, ±2, .... -0 in Fig. 2.2. 3
Hence, Eq. (2.10) indicates that the current density on the entire surface can be constructed

by convolving the fundamental unknown Jo(x,y) with a two-dimensional array of delta 3
functions, appropriately modified by the phase shift of the incident field.

As shown in Section 2.1, this type of representation is not unique. The phase shift of

the incident field could have been factored out beforehand, as follows:

00 00

J(x,y) = J 0 (x'Y) * [ 6(X - y cot2 - mT 7) 1 6(y - nT,72sinS2) eJk' aeY3
M = -00 n = -oo

(2.11) 3
Because of the difference between the two representations, (2.10) and (2.11), the two

currents Jo(x,y) are different as well. Under certain conditions, there may be advantages to 3
using the second type of representation, viz., for electrically long elements or for currents

that flow outside of unit-cell boundaries. However, the first type of representation is more I
convenient from the point of view of reconstructing J(x,y) from JO(x,y). The current on 3
the patch at the origin is equal to Jo(x,y), and the current on any other patch is equal to

I
I
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Jo(x,y) times a constant. Neither of these statements is true for the second type of

N representation, as is evident from Eq. (2.11).

3 Anticipating that the Fourier transform of J(x,y) will be needed later, the Fourier

transform is defined as
00 00

f (ax,3)=J f(x,y) eJC. e- j ' dx dy (2.12)

3 The Fourier transform of Eq. (2.10) is therefore

3 j~p)=~aJ3.~L__ . 00

T, T, sinl2= = -(a - am),,( - ,mn), (2.13)

where
ar Tr-+ kx  (2.14a)
am =T x +k

2 irn 2n
P. =n 2 - cot + . (2.14b)ttn= T,72sin.2 T71

3 Again, the spectrum of the current is discrete and is represented mathematically as a two-

dimensional sequence of delta functions whose locations are the phase constants am and

UImn of the Floquet space harmonics. The only scattered fields that can exist above and

below the surface are plane waves whose transverse wave numbers are equal to

am and Pmn.I
2.4 Finite Two-Dimensional Surfaces

3 In progressing from periodic to finite frequency selective surfaces, the problem

becomes much more difficult computationally. For a periodic surface, the total current

density on the surface can be represented in terms of the current density on a single unit

3 cell; thus, it is only necessary to work with the equivalent of a single element of the array.

In addition, since the spectrum of the current is discrete, the moment-method matrix

1 generated by applying the spectral-Galerkin technique is filled by summing samples of the

U
I
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Green's function, basis, and testing functions, in the Fourier-transform domain, at

locations corresponding to the transverse wave numbers of the Floquet space harmonics.

In contrast to this, for a surface which is finite in two dimensions, the currents on 3
each cell are, in general, different, and one is forced to treat the current on each individual

cell as unknown. In the context of the method of moments, the number of unknown 3
weight coefficients for an N x N-element FSS is N 2 times the number of coefficients in the

periodic problem for the same accuracy. In addition to being more numerous, the elements

of the matrix are also more difficult to compute. The spectrum of the current is now

continuous rather than discrete, and the moment matrix must be computed by numerically

integrating the product of the Green's function, and basis and testing functions, in the 3
spectral domain, over the infinite a-P plane.

As an intermediate step between the periodic and the two-dimensional finite surface, it I
is expedient to consider first a surface which is finite only in one dimension, permitting the 3
surface to remain periodic in the other. In this case, a finite number of uniformly-spaced

elements along the x axis are replicated in a periodic fashion along the line y = x tan.2 (see I
Fig. 2.2. The currents on a given row of elements are no longer simply related; however,

assuming that the incident field is a plane wave, the currents on any row of elements are I
related to the currents on any other row through the phase shift of the incident field. As a 3
result, if the incident field is derived from the electric and magnetic vector potentials (2.1)-

(2.2), then the induced current density on the entire surface can be represented by a 3
convolution of JO(x,y), the current density on a unit row of elements, and an infinite

periodic sequence of Dirac delta functions, appropriately phase-shifted to account for the I
effect of the incident field:

J~t,y) = J0 (x,y) I X (5( - nT,,,sinfl) S5(x - ycotQ(2) ek-- e',} (2.15)3

I

I
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The sequence of delta functions used here to construct the total current from Jo(x,y) is the

sequence of delta functions in Fig. 2.2 corresponding to m = 0.

Taking the Fourier transform of (2.15) leads directly to
cc

j (a,) ja(2,/3 ) I 3(3 - fl3(a)), (2.16)
T72 sin2 n =-oo

where
21rn

= -f - - (a - k)cotQ2 + ky (2.17)

3 Except for the special case f2 = 900, the phase constants 3n will be functions of a.

As stated previously, for a frequency selective surface which is finite in two

dimensions, there is no general relationship between the current on the entire surface and

I the current on any part of the surface. In the notation of this section,

J(x,y) = J0(x'y),

3 where Jo(x,y) is the current density on the entire two-dimensional surface.

In summary, the Fourier transform of the total induced current density j(a,3) can be

I expressed as the product of Jo(a,3), the Fourier transform of the current density on a

I subsection of the surface, times a periodicity function 1(a,,3), which is either a constant,

or a one- or two-dimensional array of Dirac delta functions,

S= 0 /./(a,/3). (2.18)

I

I
I
I
I
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CHAPTER 3

THE SPECTRAL-GALERKIN TECHNIQUE 3
31 Derivation of the Spectral-Domain Green's Function 3

One of the main reasons for choosing the spectral-domain formulation is the ability to

derive the spectral-domain Green's function - a transform relationship between the 3
scattered electric field in any transverse plane, due to the surface current J in any other

plane.

E,.(af3) GXY(a,.0) Ga,.(,3) N,(a,B)

L E=(ap LGyyx(cx,1) G~y,(a,I3) iLya,J (3j

Here we have followed the convention of using the tilde to indicate a Fourier-transformed 3
quantity, with the Fourier transform defined as

000 e xy *

f(aI )f_ _f(x,y )e-j' e- j ' dx dy

Interpreting the elements of G from Eq. (3. 1), Gx'x', for example, is the Fourier transform I
of Ex', the x' component of the scattered electric field in the plane z' = 0, divided by the I

Fourier transform of an infinite planar current sheet Jx'x',y') = eJ(aXt' + fly).

There are very few practical situations in which the printed surface can be considered I
as free-standing - in the absence of any supporting dielectric layers. Most often, the

properties of the layers are fixed by mechanical constraints, i.e., because of weight I
limitations, or requirements for temperature stability, shape and rigidity, FSS support

structures constructed with alternate layers of honeycomb and thin film are common in FSS

applications. Optimization techniques have also been applied in order to design dielectric 3
I
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layers to modify the electromagnetic properties of frequency selective surfaces [14]. The

interest in free-standing surfaces is therefore limited, and it is essential that the FSS be

3 considered in an environment consisting of a number of arbitrary dielectric layers.

The usual method of incorporating the effects of the dielectric support is the

3 scattering-matrix approach [4, 15, 16]. If a plane-wave field is incident on a periodic

surface, the scattered field is composed of an infinite number of discrete plane waves,

whose wave numbers am, Ptn are the transverse phase constants of the Floquet space

3 harmonics. If any one of these plane-wave fields is now incident upon another surface

having the same periodicity, the scattered fields will consist of the same set of Floquet

3 harmonics. In general, then, if a multilayered structure is composed only of uniform

homogeneous dielectric layers and printed periodic surfaces having the same lattice (T771,

T772, .2), then the fields existing throughout the region can be represented exactly by a

doubly-infinite set of plane-wave fields called the the Floquet space harmonics. In a

lossless medium, a finite number of these plane-wave fields will be propagating, and the

3 plane-wave fields corresponding to higher values of m and n will eventually be

insignificant in comparison to the dominant terms. It is therefore only necessary to

I consider a finite number of Floquet harmonics in order to obtain an accurate representation

for the fields in each layer.

Scattering from a given layer can now be described in terms of a matrix, whose

3 elements relate the amount of power in a given scattered plane-wave field due to an incident

plane wave from another direction. A scattering matrix is computed individually for each

3 layer, and the matrices are cascaded to predict the scattered fields from the composite

structure.

Because there is nothing analogous to the scattering-matrix approach for cascading

3 finite frequency selective surfaces, it is desirable to develop the spectral-domain Green's

function from a point of view which is general enough to be able to handle the geometry

3 shown in Fig. 3.1, which is typical in practice [14, 17]. Here, it is assumed that a single

I
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layer of metallization is embedded in an N-layer stratification, where each material is

assumed to be an infinite, uniform, homogeneous dielectric layer of complex relative

dielectric permittivity er and magnetic permeability .0. 3
I

protective film ItI t 2

dielectric substrate t -- x

dielectric honeycombt 3
structure +

2 protective 4
layers t 5

t [ Kevlar Er = 4.1-j.024

t 2 Kapton E r = 3.2-j.02

t 3 Kevlar Honeycomb E r = 1.05

t Kevlar Er = 4.1-j.024

Figure 3.1, Typical dielectric support used in FSS applications. I
I

The derivation of the spectral Green's function is substantially the method of Itob

[181, which is based on the transmission-line analogy for a plane stratified medium. For 3
completeness, and for the benefit of a different point of view, a detailed derivation of the

spectral Green's function is provided below. I
The transmission-line analogy is based on the following field properties: (1) any

arbitrary field in a homogeneous source-free region can be expressed as the sum of a TE

and a TM field: and (2) a plane wave propagating in a plane stratified medium, polarized 3
either TE or TIM with respect to the surface normal, will remain TE or TM throughout each

layer of the stratification. Because of the similarity between the two-dimensional Fourier 3
transforms of Maxwell's equations and the transmission-line equations, for each

I
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polarization, a length of transmission line can be assigned to each layer of the structure and

the transmission-line theory can be used to derive the Green's function.

3 In general, an arbitrary current sheet J," (x'y) or Jy, (x',y') = eJ( ax ' + fly3 produces

both TE and TM fields. Therefore, in order to apply the equivalent transmission-line

3 analogy, the fields must be separated into their TE and TM components. To do this, it is

advantageous to perform a rotation of the coordinate axes [181 in order to simplify the

U association between the field quantities E and H and the scalar quantities V and I.

3 The particular rotation of coordinates that achieves this simplification is determined by

the following considerations: in order for the phases of the fields to match at every point

3 on the boundary planes, the fields set up in each region due to the current sheet must be

plane waves. Furthermore, the phase constants cc and /3 of the assumed current

U distribution must be the x and y components, respectively, of the wave vectors of those

plane-wave fields. The desired simplification results if the coordinate system is rotated

about the z' axis until TE and TM with respect to z are also TE and TM with respect to the

plane of the wave vectors. In the new system, both E and H will have exactly one

tangential component at the boundary planes, regardless of polarization. Equally as

3 important, this coordinate transformation has the property that when the current sheet Jxo or

Jy, is represented in the new coordinate system, one of its components will give rise to a

field which is TE to z' and the other component will give rise to a field which is TM to z'.

3 The rotation of coordinates obtained by rotating the original - through an angle

q9 about the z' axis satisfi, All of the conditions necessary to make a simple transition

3 between the fields problem and the transmission-line problem. In the next section,

however, it will be desirable to have the incident field propagating in the +z direction to

agree with the usual transmission-line conventions. Therefore, the final coordinate system

3 is obtained by reversing the z' axis. The result is shown in Fig. 3.2, where, as long as it is

necessary to make a distinction between the two, the original coordinate system will beI
I
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designated by the primed coordinates x', y', z' and the new coordinate system by the

unprimed coordinates x, y, z;

~x coso sino~

, .sir 0 - cosoJL,'

x coso sino 1x£
II (3.2)3

' sino - cosoJL

Y'I

x I

a

YI

Figure 3.2. Coordinate transformation defined for the equivalent
transmission-line analogy. 3

An arbitrary N-layer medium is shown in Fig. 3.3, with its corresponding equivalent I

transmission-line system, where the polarization p refers to TE or TM. In thc ith layer, if

the z-dependence of the fields traveling in the +z direction is of the form e'i z , then the I
propagation constants ?'r are given by (

= a 2+ p 2-erk, I

I
U
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where ko is the free-space wave number. The characteristic impedances of the equivalent

transmission lines are defined as the wave impedances of the plane waves propagating (or

3 attenuating) in the +z direction in each medium. From Maxwell's curl equations,

TE = -E---- = J° (3.4a)I Hx

E 7- (3.4b)

HY IOXirb

With the equivalent transmission lines defined by (3.3) and (3.4), the problem can now be

U solved using a handful of highly-developed, systematic techniques.

I
tx

II

I =J
I -- -z'

Ub
Ib

Ib

II z/z z
z =0

Figure 3.3. N-layer dielectric support and its equivalent transmission-linenetwork.
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In a given length of transmission line, the general solution to the telegrapher's

equations can be expressed as a superposition of a +z-directed and a -z-directed wave,

V(z) = V "e -./2+ V-e +r = V +(z) + V -(z)

I (z) = -o[V +e -7- V -e ,

where V + and V- are arbitrary constants. If the generalized reflection coefficient F(z) is

defined as the reflected-wave voltage divided by the incident-wave voltage, i.e.,

F(z) = V (Z)
V +(z)

then the voltage and current on the line can be expressed in the form,

V(z) = V+(z)[1 + F(z)] (3.5a)

1(z) = -V+(z)[1 - r(z)]. (3.5b) 3
'raking the ratio of the voltage and current leads to an expression for the impedance Z(z),

V(z) 1 +F(z)
Z(z) = (z--'-" = Zl +(z) '(3.6)

or, rewriting this in terms of r(z), 
I

Frz =Z,(z) = 1 (Zn(Z) + I 37

where Zn(z) is the normalized impedance Z(z)/Zo. Since V+(z) = V+e-r and V -(z ) = 3
V-e ), it follows that

r(ZO = F(Z2)e 2  -1z2) (3.8)
for any two points z, and z2 on a section of uniform transmission line. 3

This brief review suggests the following strategy [19]: working from the load end to

the source end of the transmission line, in any uniform section of line, (1) normalize the 3
impedance at the load end by the characteristic impedance of the section, (2) calculate the

reflection coefficient at the load end, (3) rotate the reflection coefficient toward the source I
using Eq. (3.8), (4) compute the normalized impedance at the source end, (5) unnormalize, 3

I
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and (6) advance to the next section. The operations are highly repetitive and are efficiently

U implemented on a digital computer.

Once the input impedance seen by the source has been determined by the above

procedure, the remaining steps are independent of the specifics of the problem. The

3 boundary conditions satisfied by the fields E(z) and H(z) at z = 0 are

zx I E(0') - E(0-) 1 = 0 (3.9a)

x [ H(0+) - H(O-)] =J, (3.9b)

or, expanding Eq. (3.9) in Cartesian coordinates,

Jy= (H(O +) - Hx(O-) (3.10a)

IJx =  ( Hy(O+) - Hy(O-) ).(3.10b)

I
Assuming for the moment J(x',y')= 'e( a x' + 1'), then, according to the coordinate

transformation,
J=[ coso + j sino I ei= "  Jpy" (3.11 )

I The boundary condition satisfied by the magnetic field at the source plane is that the

discontinuity in Htan is equal to the surface current density J. Since the tangential magnetic

field is analogous to the current, symbolized by the notation Htan - I, a discontinuity in

SHtan corresponds to a shunt current source in the equivalent transmission line model. For

the TE fields (Ey, Hx, H,) and their corresponding transmission-line system, the

I appropriate boundary condition on Htan and Kirchoffs current law at the source are (Fig.

3.4) KCL: I = 1(0 ) - [ -I(0-) (3.12)

BC: Jy = H,(O+) - Hx(O-). (3.13)

I Comparing (3.11), (3.12), and (3.13), the value of the equivalent current source I s= sin(,

and, since V = IZiE and Ey -) -V (Eq. (3.4)),
Th TE e I x'P j' TE +Jax'EY=-ziT1 sine ' +j y = Eo eax' +Jy (3.14)I

I
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Is V zp+//Z I

I
Figure 3.4. Equivalent circuits at the source terminals for the transmission-

line system of Fig. 3.3.

For TM polarization (Hy, Ex, Ez),

KCL: Is = I(0 ) - [ -I(0-) (3.15)

BC: -, =Hy(O+) - Hy(O-). (3.16) I

Again, comparing (3.11), (3.15), and (3.16), Is = -costp, and, since V = IZin a E TM

ETl =-Zij cos 0 e= ' +jPi = ETMo eja ' 
.Jy' (3.17)

In the remaining steps, the fields ure converted back to the original coordinate system, and

the TE and TM components are superposed to obtain the total field,

TE. ,M dx,+~,TE ,TM iX"+fly''2+2

E , [ Ey 0 s5lno+Eo cos& ]=-+j [Zi sin 2 + Zi cos2 J ] (3.18a)

TMEyo oso +EMosinoIei='+j~i=+[ZiE,-irMIsino coso i" ' +jfy"  (3.18 b)

or, from the definition of G (Eq. (3.1)),

Gx =-[ Zi sin2 + ZT cos2 0 (3.19a) 3
Ix

= =+[Zi. -ZT ]sin coso. (3.19b)

Jx I

I
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Sinqp and cosqp are related to a and /3 by the following relations:

sino = f (3.20a)

cos= a (3.20b)I
as is evident from Fig. 3.2. A similar procedure can be used to derive

3 Gx'/y(a,/3) and Gyy(a,3). Only the results are summarized below:
LXy ' = + T jE TM

GI= _"- +[Z -Zin]sino coso (3.21a)

J,.

Gy Iy= - =[Zi cs 2 +ZT Msin2  "  (3.21b)

I As an important special case of the above, the free-space Green's function can be written

immediately by recognizing that

TE TE TE = 2 yo (3.22a)

i~Z2 0 "0 '//Z0() 70 (3.22b)I TE TM

where ZT and Zoo are the characteristic impedances for the TE and TM plane-wave fields

propagating in free-space, and y is the free-space propagation constant, as defined by Eq.

(3.3) with Cr = 1. From (3.19) and (3.21),
2I = r° -=kt a 4- 1 (3.23)1 Ik2 -_ a2  --ap ]

G(a43) =2ia)Ero[ -a3 P2 (323

As a second example, the Green's function for a two-layer dielectric support is

derived, where the current sheet is assumed to be embedded between two layers

characterized by complex relative dielectric permittivities eri, Er2 and thicknesses ti, t2 as

I shown in Fig. 3.5. When the two transmission lines extending to z +oo are replaced by

I
I
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their characteristic impedances, the impedances Z and Z as viewed in the + z and -z

directions, respectively, are written,

1 + e - 2272t2

+  zP - 70 ZP0 2  p 02 + ZPcothy.t2
pZoo - ZP 2  2 ZPo + ZP 2cothy2t2

ZPo +z 2  I
1+ zP°° - ZP Ie -2yjtj

Z 00 * ZPl eO I Z gl + ZPco thyltlzP z01 zp-= zP
1 Z0° 01 Z 0 -2 0'  + ZP01cothylt,

zPo + zPO I
The total input impedance t('in seen by the source is the parallel combination of Z; and Z

zi = Z 1Z 2 [Z 2 + ZPcothY2t2 ][ 01 + Z cothyltl ] I
Z02 1Z0 cothy I [Z02 + Zcothy2 2 I + P + ZPO0cothYjtj ][z40 + Z42coth72 t2 ]

(3.24)

The Green's function is then given by Eqs. (3.19) and (3.21).

3.2 Asymptotic Behavior of the Green's Function 3
Asymptotic expressions for the spectral Green's function are easily found. If kp2 >>I

Ierik0
2 and kpti > ir for each finite-thickness layer, then asymptotically

- kP (3.25)

cothyit i --+ 1. (3.26)

The characteristic impedances of the equivalent transmission lines are, therefore,

zoi 7 (3.27a)

M kP
zi - ED (3.27b) f

I
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I ®XI

I 00

I

is

4t 1 -.. 4t 2

Z p  Z ' 2z .r7

go..
z =0

Figure 3.5. Geometry of two-layer dielectric support and its equivalent
transmission-line system.

According to Eq. (3.27), the characteristic impedances for the TE transmission-line system

are independent of the parameters of the layers. The characteristic impedances of the TM

I transmission line system differ only by a multiplicative constant. As a result, the input

impedance Z7 is the parallel combination of two terms of the formjoWko,

ZTE O*1
- 2k " "(3.28)

Furthermore, it is not difficult to verify that under the approximations (3.24)-(3.27) the

input impedance Zi, depends only on the dielectric constants of the layers nearest the

source,I
I
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Z -- (3.29)

where er+ and Er. are the relative permittivities of the two layers adjacent to the current

sheet. Substituting the asymptotic formulas (3.28) and (3.29) into Eqs. (3.19) and (3.21), 3
the Green's function becomes

____-1_ _ k 2 P 2  a 2  1
- 1 2 + (3.30a)

k 1

job4, p + I 2(a+ + (, + r) (3.30b) 3

yy joW a 2 +p2 2(a2 + p2) (+ + E (3.30c)

These results are useful for several reasons. First, since the Green's function appears

in the product jit(a ,)G(a,3)jj(a,3), the asymptotic form of the Green's function 3
determines the minimum rate of decay necessary in the Fourier transforms of the basis and

testing functions in order for the inner products to converge. If, in polar coordinates, the

product j i Gjj does not decay faster than l/kp, the inner product will not converge, and a

smoother set of basis and testing functions must be chosen. Second, since the asymptotic I
forms are considerably simpler than the general forms, it is possible, for a judicious choice 3
of basis and testing functions, to perform the asymptotic integrations exactly [201. This

would offer advantages in terms of both speed and accuracy. However, even if the inner 3
products cannot be evaluated exactly using the asymptotic form of the Green's function, the

asymptotic form requires considerably less computational effort than the general form. I
Numerical experiments have shown that significant savings in computation time can be 3
achieved by using the asymptotic form when kp becomes sufficiently large.

I
I
I
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3.3 Singularities of the Spectral Green's Function

The spectral-domain Green's function for sources in a lossless plane stratified

medium has singularities of two different types. First, since the propagation constants Y

U are defined in terms of the square root function, which is a multivalued function, there are

branch points at the locations kP2 = erik0
2 , where kp2 = a 2 + f12. At these points the

derivative of the Green's function is undefined. There are also nonintegrable singularities
TE TM

caused by zeros in the denominators of the input impedances Z in and Z i which

correspond to guided modes in the dielectric-slab waveguide.

U Beyond this, very little can be said about the singularities without considering a

specific example. Returning to the two-layer example discussed in Sec. 3.1, if the

substrate and superstrate are identical, such that Er1 = Cr2 = Cr, tl = t2 = t, and y1 = )2 = ,

TE TMthen the denominators ATE, ATM of the impedances Zin and Zin , respectively, are given

by
| (-]oe0)2

IATE= 2Cry(ErO + )cothyr)(ErT0cothyt + y) (3.3 1a)

I -T 2'(y+ y0cothyt)(Ocothyt + 70)" (3.3 1b)

I If pole-zero cancellation does not occur, then the non-branch-type singularities of the

Green's function will be solutions of

(ey0 + )cothyt) = 0 (3.32a)

(,Cyocothyt + -) = 0 (3.32b)

(y+ y0cothyt) = 0 (3.32c)

I ( cothyt + yo) = 0. (3.32d)

Since y is a function of k P2 only, i.e., since r, is not a function of the polar angle, theITE zTM
singularities of ZiT and Zin lie on concentric circles about the origin in the a-fl plane.

Since Eqs. (3.32a-d) are transcendental equations, the locations of the singularities can

only be determined numerically. However, if the dielectrics are lossless, the followingI
I
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general observations can be made. First, the number and locations of the singularities

depend on frequency, the relative dielectric constants, and thicknesses of the layers. If any

two of these parameters are held constant while the other is varied, higher frequencies,

higher dielectric constants and greater thicknesses all tend to produce more singularities in

.. 1 . _CCiFa.i.I. ,,,and, fot kp > "E rmaxkO where ermax is the maximum of Eri, 7i is

real and positive, coth',t is real and positive, and each term in Eqs. (3.32a-d) is the sum of

two nonzero positive numbers. In such a case, Eqs. (3.32a-d) have no real solutions. I
Recalling that the branch-type singularities occur at k = "e,.ko , there can be no

singularities of either type in the region kp > "E,-ko. Likewise, for kp < k0 , a similar

argument holds. Therefore, all of the singularities lie somewhere in the annular region k0 -I

p "4rnax ko: Figure 3.6 is a plot of the Green's function for a structure with two

identical layers, characterized by Cr = 4.0, t = 2o/6 along the radial line a = /3. Eventually,

Gx(a,pf) and Gyy(a,) increase linearly with kp, becoming unbounded at oo.

600

0 I
400

300 Gxy

' 200 " Gyy

I- 100 J

0 -

0 100 200 300 400 500 600

Krho(rad/m)

Figure 3.6. Spectral Green's function for the fields at the center of two I
identical layers of permittivity Er = 4.0 and thickness
t = %16 (frequency = 10 GHz).

I
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3.4 The Spectral-Galerkin Equation

As was shown in Sec. 3.1, the general relationship between the scattered electric field

and an arbitrary surface current J radiating in the presence of a number of infinite,

I homogeneous dielectric layers can be written in the form

E'x (afp) .Gx(a,I3) Gx'y,(a,I3) 1 J'(aI3)

LEv.(a,p) Ij L = 'ap GY.Y,(a,I) Jj&(axf'P) J
The current density J is now interpreted as the induced current on a printed frequency

selective surface (whether finite or periodic), given by one of the representations (2.4),

3 (2.8), (2.10), or (2.15). Except for one or two special cases [10], the current Jo(x,y)

cannot be determined analytically, and numerical techniques must be used in order to

I compute it.

The spectral-domain method of moments proceeds as follows. Choosing a suitable

set of linearly-independent basis functions {jj}, the current JO is expanded in the form,

I[X0 =±Cj Jxj, (3.33)

where cj } is a set of complex-valued weight coefficients which are yet to be determined.

There are four main considerations involved in choosing an appropriate set of basis

functions in the spectral-domain method of moments. First, as with any moment-method

I solution, the basis functions must be linearly independent. If any one basis function could

be represented in terms of a linear combination of two other basis functions, for example,

then one column of the moment matrix would be representable in terms of two others, and

I the matrix would be singular. Second, since the method of solution is a transform-domain

technique, the basis and testing functions must be Fourier transformable. This is not a

serious limitation, since all, or nearly all, basis functions used in practice are Fourier

transformable. A third consideration, which is especially significant for the analysis of

I
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Finite frequency selective surfaces, is that the basis must be capable of representing the

fundamental unknown with a small number of terms. This is because the matrix size is

proportional to N 2 for an NxN-element array. For example, for the entire-domain basis set

of Orta, Tascone, and Zich [211, about twelve basis functions per arm are necessary to

accurately represent the current on a particular tripole element. At 36 basis functions per I

element, even a small lOx10 array would require filling and storing a 3600x3600-element

matrix. A fourth consideration that must be observed in choosing a basis is the requirement

that the basis and testing functions together have sufficient smoothness to guarantee that the I

integrals and summations generated by the spectral method of moments converge. It is also

desirable that the basis functions model, at least approximately, the known physical

behavior of the current. For example, the current flowing parallel to the edge of a printed

element exhibits an edge singularity proportional to 1/- x - x0 , where (x - x0 ) is the I
distance from the edge.

Substituting for J and J0 , the scattered electric field is of the form

=j f-r GX G_7, Y ,, a,p) +]c jpydadp (3.34)

Next, an inner product is defined satisfying properties (1-2)-(1-4) of Harrington [22],

M I
( f, g ) = j fT(x) g(x,y)dx, (strip grating) , (3.35a)

00 0 I
(f g) f f fT(xY) g~Cy)dxdy, (two-dimensional element), (3.35b)

where the superscript ,T,, signifies transpose. Choosing the testing functions to be the

complex conjugates of the basis functions [231, and forming the inner product of Eq.

(3.34) with each testing function lead to a system oft equations in 1 unknowns I
I
I
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(j*,Es)= -- c, JfJJ j:(x,y) e J Ydtdy G(a,fp)jj(a,fp) H(af) do,
4 j= I (3.36)

where the tagger "t" signifies complex conjugate transpose. The double integral over x

and y can be recognized as a Fourier-transform-type integral, which can be done

analytically, resulting in the equation

IC -, )(a GO(aff jj(a(,)3 (,) d( d -- , Einc  , 2, 1
(jIE= , (3.37)

As a result of testing with ji, the equation has been restricted to the surfaces of the

I conductors. The boundary condition has therefore been enforced by replacing the scattered

field with the negative of the incident field on the right-hand side. The specific form of Eq.

(3.37) will depend on the specifics of the problem, but for the five general types of

1 problems discussed in Chapter 2, the spectral-Galerkin equation is summarized below:

1. Periodic Strip Grating (Fig. 2.1):

b m=(a - ..) 8(p - ky) , a b + x, (3.38)
m -00

=eikyY Ji(X) Einc(x,y) dx, i = 1,2....
71c, I ji+(am) G_ (mky j-j(Cam)e.t jtx ) E 2,

(3.39)

2. Finite Strip Grating (Fig. 2.1):

fl( f3) = 2r 8(p3 - ky), (3.40)

-j(a) G(a,ky)ji(O)e' )Yda j () EinC(x,y) dx, i= , 2,

I = (3.41)
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3. Periodic Two-Dimensional Surfaces (Fig. 2.2):

21r 21r 00 0
I 7(ax) 2 iI 2 __ _ - 6(a am) 6(/3-fmn)' (3.42)Tr T72 sinf2 m = -c n = -oo

am = + kx , (3.43a)

2 -2 cot.2 + ky , (3.43b)
fimnn Trsin7 2 Tsh  I

T T sinS2X m n I I ji (am,,mn) G(am,fmn) jj(a.,mn)7TrzI2j m =-*n=-*I

f j (x,y) Einc(x,y) dxdy , i = 1, 2, .... 1 (3.44)

4- Finite-Width Two-Dimensional Surfaces (Fig. 2.2):

7(a,)= 2r n(a)) (3.45)I
T772sinO n = -,,

2,rn

n(a)= sin2 -(a - k,)cot.Q + ky (3.46)

2~~IrT YnC f J j'(a,/3n) G(a,pn) j(a43in)da
I oI

27T72s2 j= 1 n=-**

"f~. inc:xy -. d

j(x,y) E_ tx y)d y, i = 1, 2, .. . 3.7

5. Surfaces That Are Finite in Two-Dimensions (Fig. 2.2):

7/(c,13) = 1 , (3.48) I
I
I
I
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7 1 eTiiTnsinf2Z Jf f j(x,J) (c(,13) j(a,I3)dcxdI3

=JL ji_(xy) Ein, (x,y) dxdy , i = 1, 2, ... I. (3.49)

From this summary, it is possible to see that the difficulty involved in ccmputing the

moment matrix ranges from performing a summation over samples of the Green's function,

basis, and testing functions at the discrete values am, 0,, to a complete two-dimensional

integration over the infinte a-3 plane.

3.5 Incident Field

The spectral-Galerkin equation derived in the previous section is written in terms of

I the quantity Einc, defined as the electric field reaching the plane of the printed conducting

surface with the conductors removed, i.e., in the presence of the dielectric support. For
plane-wave incidence, the tangential field Elinc is of the form,

3 Etic= [ 'E,.o + ^'Ey.o ]eJkx X+JkYy (3.50)

where Ex'o and Ey'o are complex constants. When combined with the testing functions, the

I inner product (3.28) becomes

I E i J) [Ji(x,y) Jiy,(Xy ) ] ek. x + Jky*'dxdy' (3.51)

This can be recognized as a Fourier-transform type of operation, allowing the integration to

I be done analytically, resulting in

, Ei) = Ex.O[ Jix.(kx.,ky) l* + Ey.0[ Jiy.(kx,k) (352)

For the strip grating,

(J, E, ) = -_ xE , = {E.o Jix(k,.) + Ey'o jiy:(kx)}elkyY . (3.53)

In order to find the constants Ex'o and Ey'o, we will again make use of the

transmission-line analogy and rotation of coordinates defined in the derivation of theI
I
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Green's function. In passing, we note that the fields in a plane stratified medium can also

be determined by writing a representation for the fields in each region and matching the

tangential components of E and H at the interfaces to solve for the unknown constants.

For two layers, there are six unknown constants to be determined by solving a sixth-order

system of equations. While this is a valid means of proceeding, the derivation is lengthy I
and difficult, and it is impractical for three layers or more.

For a plane wave polarized either TE or TM with respect to the surface normal and

propagating along the line defined by the spherical angles (ei,pi), the field anywhere in an

N-layer dielectric medium can be derived by the following steps. First, rotate the

coordinate axes so that the incident propagation vector is in the x-z plane of the new 3
coordinate system. The incident angle 9i is equal to the tp of Fig. 3.2. If the incident field

is derived from the unit vector potentials A and F, then the plane-wave fields propagating

in a free-space region in the absence of scatterers are given by Harrington [241,

TE+ i(k..x'+ k.y') + yoz'
Eto I [xjky, + yjke, ei (3.54a)

T,. ]eJ(k.x'+ ky-y') + 1,z '
-Et --- x^'jkx. + yjky.Iexx ~y' O (3.54b)jowe 0

Applying the coordinate transformation (Eq. (3.2)), U
ETE+ k

Eto = Y -jky, sino -jk. coso ]leJk - Oz (3.55a)

TM+ x 70 ~kkbEtO = X -T---Ukx' coso +jky, sin0 lei x - 70z  (3.55b)

where
kx = kx,coso + ky'sinO , 3

ky =0

As before, the primed variables x', y', z' refer to the original coordinate system, and the I
unprimed variables x, y, z refer to the rotated coordinate system. Second, translate the

fields problem into an equivalent transmission-line problem by assigning a characteristic

I
I
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impedance Z0iP and propagation constant r, to each layer, where the polarization p = TE or

TM.

= -2 +I 7,

7TE =-EY OM

3 Third, alternating between F(z) and Z(z) from the load end of the transmission line to the

source end, calculate the generalized reflection coefficient at each interface. Remember that

I although V(z), I(z), and Z(z) are continuous at the interfaces, F(z) is not. For the two-layer

example introduced in Sec. 3.1,

z; = z2Z9 + Z0cthr 2t2
Z Z2Zoo + Z02coth yt2

_ z+ +Zcoth1rt

ZP + ZP1 cothlt

I'IO +o,- ;-0P
+

z'; + zO,
I zn - zP0

I zi + zOII

3 z(-t1) Z- z0O0
zfin+ ZPoO

Since E7 T -V and E TM  +V, the complex amplitude of the incident voltage wave V0 is

given by

I
I
I
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VTE+ = jky, sinp + jk. , coso , (3.56a)

TM+ _ o IJ~
0 = 7 • cos + jky, sino I . (3.56b)

Fourth, compute the voltage in each region beginning at the source end of the transmission I
line. For the twolayer example, in region 0,

VP(-tl) = VPO+eyot [ 1 + .(-t1) 1 (3.57)
In region 1, 1

+VF(-tj)e-71'V+= 1 +/ 1,(-ti) '(3.58)

VP(O) = VP [ 1 + r(o) 1. (3.59) 3
Fifth, make the association from voltage back to the electric field,

EO-v (0) (3.60a)

E70 = +VTM(0) , (3.60b)

and sixth, rotate back to the original coordinate system:
Einc, , ,. TE ei(k,.x'+ ky~y')

E, (x,y') = ['sino - j'cos]EY0  , TE inc., (3.61a)
E"C(X Y, = X^,,s .1 (.-. j~r'+ ky.y')

EinC(x',y') = [x'cos¢-- ytsi]EtYxo y , TM inc. (3.61b)

This completes the derivation of the incident field. I
I
I
I
I
I
I
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I
I

CHAPTER 4

* THEORETICAL AND NUMERICAL CONSIDERATIONS

Before the equations developed in the previous chapter can be implemented on the

computer, there are a number of points that must be considered.

4. 1 General Characteristics of the Inner Products Arising in the Analysis
of Finite Frequency Selective Surfaces

If a function Jjo(x,y) is shifted relative to the origin by an amount (xj,yj), where

jj(x,y) - j0(x-xj,y-yj), then the Fourier transforms of the two functions are related by the

3 translation property of the Fourier transform. Modifying the notation slightly so that

jj 0 (a,f3) is real, the Fourier transform of jj~x,y) can be expressed in the form,

Sj/(a,) = Kjo( a,P) eJaxJe-JPYJ, (4.1)

where Kj is a complex constant. If the original function was either real and even or real

I and odd, Jj0(a ,1) will be either real and even or real and odd. This is true for the vast

majority of basis and testing functions used in practice, one exception being the traveling-

wave expansion used in the analysis of electrically-large bodies.

If the current density on a finite-width two-dimensional surface, for example, is

discretized using entire-domain basis functions, such that yj = 0 for all j, then substituting

I representation (4.1) into Eq. (3.47), the matrix element Zij is given by

zi 2 n X L io(a,p3,) G(a,3,) J0af,) id 42I

I
I
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where xij = xi - xj, and the superscript "T" signifies transpose. Since J i0(afl) is real, the

complex conjugate appears only on the complex constant Ki and on the phase shift term

e "]°zxi.

If 9p(a) is defined as the product Jio(a,P8)C(a,Pfn)jjo(a,fln), which is a complex-

valued, scalar function of a, except for isolated singularities due to the Green's function

(which is the subject of the next section), (a) is relatively smooth. The term emij, on the

other hand, which depends on the separation between the basis and testing functions, can I
be highly-oscillatory, and in general, the greater the distance between a pair of basis and

testing functions, the higher the oscillation. A plot of the integrand is shown in Fig. 4.1

for a finite strip grating whose current density flowing perpendicularly to the strips has 3
been discretized with triangular basis functions with a half width A of A/10.

Triangle-Triangle Interaction
D = lambda/10, xij = 2*lambda A 0

2

S0.0005

- z

e 0.0000 6I
S-0-0005 -0

€ -0.0010 E,1 = E,2 = 4. 6

0 500 1000 1500 2000 frequency = 10 GHz
alpha (1/m) ( ,O)=(.11 .10)

Figure 4.1. Plot of the integrand representing the mutual coupling between
two x-directed triangular currents separated by 22 o.

If the rate of oscillation is high enough relative to the variation of(Pa), in the integral, each 3
positive half cycle of the integrand will cancel an adjacent negative half cycle of the

function, making the result zero, or nearly zero. This intuitive observation is gtated 3
I
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mathematically in the Riemann-Lebesgue Lemma [13], which says, if (p(a) is absolutely

integrable on an interval (a,b), then
b

lim j(a) e-Oida = 0,Xij----0 1

where a and b are finite or infinite constants. It is not necessary for (p(a) to have a

bounded derivative for the above result to hold.

A sufficient condition to guarantee that (p(a) is absolutely integrable is that each

dielectric layer be slightly lossy. Otherwise, the integrand will contain non-integrable

I singularities corresponding to unattenuated guided modes in the dielectric-slab waveguide.

The following conclusions are deducible from the above premises. (1) If the

dielectric layers have some loss, however small, the mutual coupling between FSS

elements will become negligibly small as their separation increases. This suggests, (2) that

beyond a certain separation, it will be possible to neglect the direct mutual coupling

between two elements in the array. In very large arrays, it is only necessary to calculate the

mutual coupling between one element and a finite number of its nearest neighbors. The

remaining terms will be negligible by comparison and may be set to zero without

introducing significant error.

The coupling distance, or maximum separation for which direct mutual coupling must

be taken into account, depends on the parameters of the dielectric support. If the dielectrics

are extremely lossy, for example, the fields produced by one element will attenuate rapidly

I away from the source and will have little direct effect on the currents induced on a distant

element of the array. If the elements are part of a free-standing surface, numerical

experiments have shown that if the x and y periodicities are roughly equal to A/2,

significant mutual coupling exists only between elements that are less than about seven

periods apart. For surfaces supported by dielectric layers, or backed by perfectly-

I conducting ground planes, the coupling distance will be somewhat higher.

I
I
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A third conclusion deducible from the above premises is the following: for distant

interactions, the dominant coupling mechanism is the guided modes in the dielectric layers. I
If xij is large but not infinite, over intervals where (p(a) is relatively smooth, as already

shown, the factor eJcij will cause cancellation to occur in the evaluation of the integrals.

For large distances xij, therefore, significant contributions to the inner products will occur

when (p(a) is singular or sharply peaked. These features are associated with the guided

modes in the dielectric-slab waveguide. I
I

4.2 Singularities of the Spectral Green's Function

The analysis of periodic structures by the spectral-domain method calls for sampling

the product of the Green's function, basis, and testing functions, in the Fourier-transform

domain, at the transverse wave numbers amn, timn of the Floquet space harmonics. These I
are represented graphically by the intersections of the grid lines in the reciprocal lattice of

Fig. 4.2. Since the frequency, permittivities, thicknesses, periodicities, and incident angles

are chosen independently, it is unlikely that the Green's function will be sampled ,t one of

its singular points, represented by the concentric circles in Fig. 4.2. However, in the

unlikely event that this does happen, any of the above parameters, for example the incident I
angles, can be adjusted by a small amount to shift either the locations of the singularities or

the locations of the sample points (am,,Pm) to avoid sampling directly on a singularity of

the Green's function.

For a frequency selective surface of finite width, the formulation calls for a number of

integrations to be performed along the diagonal lines 2n I rn -+

labeled n = 0, +1, ±2,. . in Fig. 4.2. For free-standing surfaces, the free-space Green's

function will contribute an integrable singularity to the integrand at kp2 = k0
2. In this case,

the function can be integrated with a judicious choice of a numerical integration routine. If

the printed surface is deposited on the surface of one or more lossless dielectric layers, for I
I
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I I n = - . I 
_ ____ _____ _ a m

-I

I I 0
n =0

II I c I .

T a"

M =-1 M 0 M

Figure 4.2. Reciprocal lattice for periodic surfaces.

a real, at least one integration will pass through a non-integrable singularity of the Green's

Ifunction. Viewing the situation in the complex-aplane, the path of integration is along the

Ireeal-a axis, where a number of singularities are encountered for a small number of

integrations around n = 0 (Fig. 4.3(a)).

There are at least two methods of handling the singularities [25]. If the dielectric

layers are assumed to be slightly lossy, the singularities migrate off the path of integration

as shown in Fig. 4.3(b), and there is no longer any theoretical difficulty in performing the

integrations. This is not usually an inconvenience, since all physical materials have some

loss. However, the lossless situation can be considered in the limit as the loss tends to

,Ielaaiweeanme fsnuaite r nonee o ml ubro

Inerto aon n=0(i.43a)
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Imf a) Ima] I
x -LR 

{ 
I

VoRe[a) Re(aI

I
(a) (b)

Im{ a) Imf) 'I
- Refa} Re(a) I

(c) (d) 3
Figure 4.3. Complex-a plane:

(a) singularities of the spectral Green's function for a lossless I
dielectric, assuming one guided mode is supported in the
dielectric (time convention: e"t).

(b) locations of the singularities assuming the dielectric has a small
amount of loss.

(c) contour of integration obtained by considering the lossless case I
as the zero-loss limit of (b),

(d) rectilinear path obtained by deforming the contour of (c). I
I

zero, as long as the contour of integration is defined in such a way as to encircle the

singularities in a manner which is consistent with the lossy case (Fig. 4.3 (c)). However, 3
since the locations of the singularities can only be determined numerically, and since the

contour can be deformed through any analytic region of the function, it is more convenient I
to integrate along a rectilinear path as shown in Fig. 4.3 (d).

I
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Both of these methods were found to be successful means of handling the

singularities. Contour integration may offer some advantages in terms of efficiency. If the

distance 5 from the path of integration to the singularities is varied as a parameter, then the

greater the distance, the smoother the integrand, and the fewer number of points are

3 required to integrate the function to the same accuracy. In Table 4.1, a typical integral

arising in the study of the finite strip grating is evaluated by the contour integration method,

for various values of 5. The current density flowing parallel to the axis of the strips has

been discretized using pulse basis functions. The dominant self-interaction term is

evaluated using an adaptive numerical integration routine that automatically adjusts the

3 sampling rate in order to accommodate for changes in the smoothness of the function.

Table 4,1 shows the number of function evaluations required to achieve the same relative

I accuracy of 0.1 per cent. As indicated in the table, the least number of function evaluations

is exactly one third of the greatest number.

Table 4.1. Number of function evaluations required to integrate a function
to the same relative accuracy using the contour integration method.

3 +4 ir

-W- + j3

-w2 fGyy(,ky) sinc 2 ( a)da NPTS
2;r -4r

--W .J

I
(0.29138 -j0.39950)*10l 0.01k o  1140

I (0.28941 -j0.39567)*10 - 1 0.05ko  820

(0.28835 -j0.39399)*10 - 1  0.10k o  420

(0.29077 -jO.39677)*10-1 0.20ko  380

frequency = 5.625 GHz (0,9o) (0.50,0.50)

pulse width W = 0.02977524.

two identical dielectric layers: tl,t2 = 0.09375/0 Er1,,r2 (4 -j0)

I
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The results of Table 4.1 suggest that it may be possible to find an optimum path 3
which would require a minimum of computational effort. Kong and Shen [261, to find the

fields of an antenna submerged in a dissipative dielectric medium, define vertical branch 3
cuts which are actually the steepest-descent paths for a particular configuration of

transmitting and receiving antennas. Since the integrand is exponentially decaying in the U
direction perpendicular to the real-a axis, it can be integrated using only a few evaluations

of the function. U
Th, finite FSS will require considerably more integration time, but the considerations U

are identical to those in this case. I
4.3 Numerical Integration

As was shown in previous chapters, the spectral-domain formulation of the method I
of moments applied to the analysis of finite frequency-selective surfaces leads to a number 3
of integrals involving the Fourier transforms of the Green's function, basis, and testing

functions. Because of the complexity of the integrands, the integrals cannot be evaluated 3
exactly and some method of numerical integration must be employed.

An intelligent choice of a numerical integration scheme depends on the nature of the I
integrand. Integrals with special difficulties such as infinite ranges of integration,

singularities, or highly-oscillatory integrands should be treated in special ways, developing

specific automatic routines tailored for each type of difficulty. "The programmer," 3
according to Davis and Rabinowitz, is "in the position of the sportsman who has given up

worms but now must know which fly to use to catch his fish" [27]. A poor choice could I
lead to excessive computation time or give erroneous results. 3

The integrands encountered in the spectral-domain method of moments have all of the

above difficulties associated with them. First, in the lossless limit, for k,2 < ermax ko2 , the 3
integrands have a number of isolated singularities. There are branch points where the

phases of the propagation constants r, are discontinuous and singularities caused by zeros I

I
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TE TMin the denominators of the input impedances Zin and Z i Even if the singularities are

avoided either by introducing a small loss into each region or by deforming the path of

integration into the complex plane, the integrands will still vary rapidly in the vicinities of

the singularities. Second, interactions between basis and testing functions which are

3 separated by a few periods are characterized by highly-oscillatory integrands. As the

distance between a pair of basis and te: ting functions increases, the rate of oscillation

I increases proportionately. Third, the limits of integration are infinite.

Of the three, the singularities are considered to be the most serious difficulty. The

oscillation is manageable for arrays with moderate dimensions, while for large arrays, the

integrations can be confined to the regions around the poles. If the integrand has a certain

minimum asymptotic rate of decay, the limits of integration can be truncated to finite values

Iand the integral evaluated over the finite interval.

The sampling rate in numerical integration is determined by the number of points

necessary to represent the integrand in a given region. For k2 < £ma ko2, the sampling

rate is dominated by the presence of the singularities. Outside this region, the oscillatory

behavior of the integrand dominates. Because the integrand has two regions dominated by

I different behaviors, becauv:e the integrand contains a number of singularities, and because

the locations of these singularities can only be determined numerically, an adaptive

numerical integration routine that automatically adjusts the sampling rate to accommodate

U for changes in the smoothness of the integrand is a natural choice.

The advantage of such a scheme is that the integrand is sampled heavily only in

3 regions where the function is varying most rapidly. If, over a given interval, the integrand

is relatively smooth, the sampling rate is automatically reduced to a minimum. The

algorithm is also capable of I-andling singularities. Davis and Rabinowitz report that an

adaptive routine based on Simpson's rule has been used to successfully integrate 1/bc

through zero. Hillstrom [28] has done some numerical experiments that indicate that if theI
I
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integrand is sharply peaked, or if great accuracy is desired, a high-order adaptive routine is

most efficient.

Many variations of adaptive integration have been proposed in the literature. Rice, I
who is quoted by Davis and Rabinowitz, has studied the subject in detail and estimates that

there are about a million adaptive quadrature algorithms which are potentially reasonable I
and interesting. While a complete discussion of the subject would be out of place here, the

essential features of adaptive integration are embodied in the following example.

On a given interval, the function is first integrated using a previously-chosen 3
fundamental integration rule. The interval is then halved and the same rule is applied to

each of the two subintervals. If the result of integrating over the two subintervals is within

a specified tolerance of the result for the total interval, the result of the two integrations is

accepted, and a new interval is selected for the next iteration. If the result of the two I
integrations does not fall within the allowable tolerance, one of the two subintervals is 3
selected as the total interval for the next iteration, and the process is repeated. For example,

if NCn is the result of applying an n-point Newton-Cotes integration rule over [a,b], and 3
2 x NC, is the result of applying the same rule to each of the two subintervals, then, if

I2xNCn-NCn I<eI2xNCn I, (4.3) 1
the result 2 x NCn is accepted as the value of the integral over [a,b]. Otherwise, each of the

subintervals is treated as the original interval using &NF2 as the pro-rated error tolerance,

since &/2 is usually too strict in practice. The actual error is usually much less than e. 3
The choice of an integration rule to be used as the basis for an adaptive algorithm

depends on a number of considerations. The theory of approximate quadratures depends Ib db

on replacing the integral faf(x)dx by another integral J}P(x)dx, where q0(x) can be

determined in a simple way [29]. The function qp(x) is expressed as a series of weighted

orthogonal functions over [a,b]; then (p(x) is integrated exactly to obtain an approximation 3
to the desired integral. If the integrand is sampled at the (n + 1) points yo, yl, ... Yn, the

result of the integration can be expressed in the form I

I
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b

f 4(X)dx=AoYo + A 1y+..+ (4.4)

where the (n + 1) constants Am are independent of the (n + 1) abscissas Ym. In the

Newton-Cotes-type formulas, the points Ym are fixed. It follows that if f(x) is a

3 polynomial of degree _< n, the error in integrating (0(x) can be made to vanish by the proper

choice of the Am's. In Gauss's method, both the sample points Ym and weights Am are

I determined in such a way that the difference between Jf(x)dx and f Jqx)dx is a minimum.

3 Since there are now (2n + 2) available constants, an (n + 1)-point Gaussian-quadrature

formula is capable of integrating exactly a polynomial of degree < 2n + 1. Thus, for the

3 same relative accuracy, a Gaussian-quadrature formula requires fewer points, or, for a

given number of sample points, a Gaussian-quadrature formula is more nearly exact than

I the corresponding Newton-Cotes formula.

Integration rules based on equally spaced abscissas, such as the Newton-Cotes-type

formulas, have the advantage that as each interval is halved, only half of the function values

need to be computed, since the other half is available from a previous iteration. Many high-

order Newton-Cotes rules contain weights of opposite signs, which, because of finite word

3 length, could result in a loss of accuracy. Newton-Cotes rules based on an even number of

points have rarely been used in practice, since they are generally less accurate than the next

lower order rule of the same type, which can be verified by examining the error

3 expressions given by Abramowitz and Stegun [30]. A notable exception to this is the

trapezoidal rule.

3 As stated before, Hillstrom has shown, by numerical experiment, that if the integrand

is sharply peaked, or if great accuracy is desired, an adaptive high-order rule is most

efficient. Hillstrom's experiments were repeated using the adaptive procedure outlined in

3 this section. Adaptive algorithms ANC3, ANC7, and ANC 11, based on 3, 7, and lI-point

Newton-Cotes formulas, were applied to two different test integrals having sharply peaked

3 or singular integrands. ANC3 is an adaptive Simpson's rule, which is the minimum-

I
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degree rule used adaptively in practice. ANC7 is based on a 7-point Newton-Cotes rule,

which is the highest-degree rule based on an odd number of points with all positive

weights, and ANCI 1 is based on the highest-degree rule given by Abramowitz and Stegun 3
[30].

Each of the routines was required to integrate the same function to the same relative 3
accuracy e, and each was limited to the same minimum sampling interval, which was

chosen to be approximately 2/106. If convergence had not been achieved at this point, the I
most accurate estimate was accepted as the value of the integral over that subinterval and the 3
process was allowed to continue. An algorithm is considered most efficient if it requires

the least number of functional evaluations to obtain the result. 3
The first integral is of the form f 'I(x2 + p 2)-1 dx, where p is a parameter. For small

p, the integrand has a peak of height p-2 at the origin and is approximately equal to one at I
the endpoints. Table 4.2 shows the number of function evaluations required by each

routine to achieve the same relative accuracy. Results are also provided for the popular

ROMBERG integration method, to highlight the advantages of using adaptive integration

for sharply peaked integrands.

Although the adaptive algorithms described here, and in particular the convergence I
criterion, are somewhat different from those implemented by Hillstrom, the results are very

similar. The "best" integration rule to use in an adaptive scheme depends both on the

desired accuracy and on the smoothness of the integrand. If extreme accuracy is desired, 3
an adaptive routine built on a high-order rule is most efficient; but if two or three digits of

accuracy is sufficient, for the range of the parameters tested, an adaptive routine built on a 3
moderately high-order Newton-Cotes formula ANC7 is most efficient. The comparison

with the results of the ROMBERG algorithm is striking.

I
I
I
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Table 4.2. Comparison of several adaptive quadrature routines for
integrating sharply-peaked functions of the form (x2 + p2)-l.

I = 10-2  p = 10-3  p 10-4

e= .01 e=.01 e= .01

3 ROMBERG 513 ROMBERG 8193 ROMBERG 65537
ANC3 129 ANC3 249 ANC3 4013 ANC7 169 ANC7 265 ANC7 337

ANC11 241 ANC11 241 ANC11 521

3 e=.001 e = .001 E=.001

ROMBERG 1025 ROMBERG 8193 ROMBERG 655373 ANC3 273 ANC3 481 ANC3 769

ANC7 169 ANC7 265 ANC7 3613 ANC11 241 ANCI1 401 ANC11 561

e = 10-4  e = 10-4  E = 10-4

ROMBERG 2049 ROMBERG 16385 ROMBERG 262145
ANC3 481 ANC3 929 ANC3 1449

ANC7 193 ANC7 385 ANC7 577
ANC11 281 ANC11 441 ANC11 561

-e= 10-5  E= 10-5  E= 10-5

ROMBERG 2049 ROMBERG 32769 ROMBERG 2621453 ANC3 977 ANC3 1793 ANC3 2561

ANC7 361 ANC7 505 ANC7 7931 ANC11 281 ANCI1 441 ANC11 601

E= 10-6 E= 10-6 e= 10-63 ROMBERG 4097 ROMBERG 65537 ROMBERG 524289
ANC3 1897 ANC3 3425 ANC3 4409
ANC7 409 ANC7 721 ANC7 1009

ANC 11 321 ANCI 481 ANC 11 721

1
I
I
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A second type of difficulty encountered in the analysis of finite frequency selective 3
surfaces is an integrable singularity of the type 1/ x2 - 1. This type of singularity is

present in the transform-domain expression for the free-space Green's function, Eqs. (3.3) 3
and (3.26). At the singular points, x = +1, the magnitude of the integrand becomes

unbounded, while the function reverses from real to imaginary and vice versa. This 3
function can be integrated exactly to give g

J L dx =21n(L +A N)-jr (L_> 1). (4.5)

This integral was evaluated using the same adaptive quadrature schemes as before. The

results are summarized in Table 4.3. Of the routines tested, for 0.01 _5 E < 0.005, the

adaptive Simpson's rule was most efficient; for 0.002 e <0.0001, the adaptive 7-point 3
rule was most efficient. As in the first example, for extremely tight error bounds, sayE <

10-5, the higher-order rule ANC 11 is expected to become more efficient than the lower- I
order rules ANC3 and ANC7.

These conclusions are based on the performance of integration rules with evenly-

spaced abscissas. The question remains as to whether there is any advantage in using an 3
integration rule with non-equally-spaced abscissas, such as the Gauss-type formulas.

Chugh and Shafai, for example, report that an iterative nonadaptive algorithm built on an 3
11-point Gauss-Legendre integration rule was more accurate and more efficient than the

popular ROMBERG integration method at handling a particular two-dimensional phase I
integral arising in electromagnetics [31). 1

The fact that the abscissas are unequally-spaced makes an adaptive Gaussian-

quadrature algorithm particularly robust. When a given interval is bisected, since the 3
abscissas are, for example, given by the zeros of Legendre polynomials, none of the

sample points coincide with previous values, and subsequent integrals are based on entirely I
I
I
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Table 4.3. Comparison of several adaptive quadrature routines for3 integrating a singularity of the form 1/ x 2 - 1

e = .01 e = .005 .002

ROMBERG 8193 ROMBERG 131073 ROMBERG 524289

ANC3 497 ANC3 569 ANC3 721

ANC7 553 ANC7 625 ANC7 673
ANC11 681 ANC11 721 ANC11 841

Se= .001 e = .0005 e = .0002

ROMBERG 524289 ROMBERG 1048577 ROMBERG 1048577
ANC3 881 ANC3 1009 ANC3 1225

ANC7 721 ANC7 769 ANC7 889
ANC 11 881 ANC11 881 ANC11 921

E = .0001

ROMBERG 1048577

ANC3 1457
ANC7 889
ANCIl 1001

I
different values of the function. If the convergence criterion is satisfied under these

conditions, the result is especially reliable.

3 However, the source of all the advantages of using a Gaussian-quadrature formula in

an adaptive routine is also the cause of its main disadvantage. Since, in general, no two

abscissas coincide, all previous function evaluations are discarded in the next stage of

3 refinement. The overall efficiency of an adaptive Gaussian-quadrature routine, relative to a

comparable Newton-Cotes routine, will therefore depend on the relative importance of the

3 following considerations: (1) the number of points used in actually evaluating the integral

is expected to be somewhat less for an adaptive Gaussian-quadrature routine, but (2) theI
I
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cost of determining these points, which is equal to the cost of discarding all previous

function values, may be prohibitive. Clearly, the second factor depends on the complexity I
of the particular integrand being considered. As the integrand becomes more difficult to 3
compute, the added computation time due to calculating and then discarding previous

function values will eventually outweigh, then overwhelm, the time saved in using a more 3
accurate integration rule. Unfortunately, there is no way to determine the complexity of the

integrand where this transition occurs. I
A numerical experiment was conducted in order to determine the efficiency of an 3

adaptive Gaussian-quadrature routine relative to a comparable Newton-Cotes routine for a

particular integral arising in the analysis of the finite strip grating. Since Gaussian- 3
quadrature formulas are open type, i.e., since the function is not evaluated at the endpoints

of the interval, a 10-point Gauss-Legendre rule was compared to an 11-point Newton- I
Cotes rule. In order to integrate a function of this complexity, the adaptive Gaussian-

quadrature routine required from two to three times as long as the comparable Newton-

Cotes algorithm.

4.4 Symmetry I
TE TMThe input impedances Zin and Z i that are used in the derivation of the spectral-

domain Green's function are functions of a2 + /32 only, and are, therefore, even functions

of both variables. According to Eqs. (3.19)-(3.21), Gxx and Gyy are, therefore, even 3
functions of cz anL !', wwe 1),, is ii f,.,./nctic, of both variables. Since nearly all of

the basis and testing functions used in practice are either even or odd, their Fourier

transforms are either even or odd as well. In this section, we will investigate under what

conditions symmetry can be used to reduce a two-dimensional summation or integration I
over the infinite a-P3 plane to a summation or integration over the half plane a >_ 0 or the

quarter plane a t 0,/3 0, 0, reducing the total number computations to one half or one

quarter of its original value. 3
I
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To take advantage of symmetry, the integrand or summand must be evaluated at

symmetrical points (±a, ±3). Referring to Fig. 4.2, it is clear that for the periodic FSS,

3 the sample points of the summand are not symmetrical, in general, about either axis, and

symmetry cannot be used except in special cases. If the skew angle S2 is equal to 900 and
S- - = 2;rn, ,±1

the incident angle (p is zero, then the sample points of G, j i, and j j, in T n = 0 1,

±2, ..., will be symmetrical with respect to the a axis, and the computation time in filling

the moment matrix would be reduced by approximately one half. If, in addition, 0 = 0,

then the sample points oxm = T-- , m = 0, ±1, ±2, ..., would also be symmetrical about the

/3 axis, allowing the number of computations to be further reduced to approximately one

3 fourth the original number. However, if the incident field is derived from the magnetic and

electric vector potentials, Eqs. (2.1)-(2.2), the field for (1,p) = (0,0) is not defined.

On the other hand, if the problem of interest is a frequency selective surface of finite

width, rather than summations at the discrete points (am,3 mn), the formulation calls for
2irn

integrations along the diagonal lines/3n - T2sin - (a - kx)cotS2 + ky, shown in Fig. 4.2.

3 As in the periodic case, generally the integrands are not evaluated at symmetrical points and

symmetry cannot be used. However, there are numerous practical situations, less

I restrictive than in the periodic case, where symmetry can be used. If S2 = 900, then the

lines of integration, ,6n = 2r + ky, are horizontal, and the even/odd character of theT772

integrands with respect to a can be used to decrease computation time by one half. This is

3 true for the strip grating, for example, and for a large number of other geometries used in

practice. If, in addition, 9 = 0, then ky = 0, and the lines of integration will be located

1 symmetrically about the a axis, allowing another factor of two reduction in computation

time.For the finite-FSS problem, which requires a full two-dimensional integration over

the infinte a-fl plane, if the basis and testing functions are real and either even or odd,

symmetry can always be used to reduce the region of integration to the quarter plane a _> 0,

* /3 0.

I
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4.5 Translation, Reciprocity, and Parallel Matrix Fill

The analysis of finite frequency selective surfaces by the spectral-domain method of 3
moments requires an enormous amount of computation time unless careful consideration is

given to the efficient computation of the matrix elements. It has already been shown that a I
judicious choice of a numerical integration technique can mean an order of magnitude 3
speedup in generating the moment matrix. Equally significant is the computation time

saved by eliminating redundant calculations. If the current density on a finite-width FSS is 3
discretized with entire-domain basis functions whose unshifted versions are real and either

even or odd, then the matrix element Zij can be expressed in the form I

Z1 = 21r/- n Io((a,3) d(ox,f3) jjo(a,f3.) ej '' ex', doa

where Ki and Kj are complex constants, Ji0 and JjO are real, and (xi , yi) and (xj, yj) are the I
coordinates of the basis and testing functions relative to the origin. According to this

equation, the interaction between basis function jjo at position (xj, yj) and testing function

J iO at position (xi, yi) depends only on the distances xij = (xi - xj ) and Yij = (Yi - yj). For

example, if the current density on a finite-width frequency selective surface of thin linear

dipoles is represented in terms of rooftop basis functions as shown in Fig. 4.4, and I
Galerkin's testing procedure is used, many of the interactions are identical: Z11 = Z22, etc.,

Z12 = Z23, etc., Z13 = Z 24, etc., Z 16 = Z27, etc., Z 17 = Z 28, etc., Z 18 = Z29 , etc.

If the basis functions are numbered as in Fig. 4.4 and arranged in a vector, the 3
resulting matrix Z will have two levels of Toeplitz structure, as indicated in Fig. 4.5. The

full matrix will be a block-Toeplitz matrix, and each Toeplitz block will itself be a Toeplitz I
matrix, i.e., the independent elements of Z lie in the first row and column of the blocks

Bk1, and the remaining elements are obtained by copying these elements parallel to the main U
diagonal. The result is that instead of computing (NI0 )2 matrix elements, where N is the 3
number of elements in a unit row and 10 is the number of basis functions per element, it is

I
I
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y

1 6 1
2 7 12
3 18 .13 x3 4 9 14
5 10 15

Figure 4.4. Rooftop approximation for the current on a finite-width arrayI of thin dipoles.

I Z1,I Z 1 ,2 Z1,3 Z 1 ,4 Z1,5  Zl,6 Z1 ,7 Z1,8 Z1 ,9 Z 1 ,10 Z 1 ,1 1 Z1 , 12 Z1 ,13 Z1 ,14 ZI,15Z2.1 /Z2,6 Z2,11

I Z3.1 Z 3 ,6  Z 3 ,1 1

Z4, 1  Z4,6  Z 4, 1 1

L z5,1 z 5,6  .z5,
Z6 ,1 Z 6 .2 Z 6 ,3 Z 6, 4 Z 6, 5

1
7,1

1  BZ8.1 1l B2

49.1

Z1 1.1 ZI 1.2 11,3 ZIl1, 4 Zl1.5
Z1 2 ,1

Z13,1 B 21  B 11

I ZI4,1

z 1 5 1

Figure 4.5. Independent elements of the moment matrix Z for the example
of Fig. 4.4, showing two levels of Toeplitz structure.I

only necessary to compute the (2N - 1)(210 - 1) independent interactions in the first row

3 and column of each Toeplitz block. The actual amount of computation time saved will

depend on the size of the. matrix.

I
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The translation property that produced the significant savings in this example is not

dependent on the details of the example. The following general conclusion is valid: if a

Finite frequency selective surface consists of a uniform array of identical elements, and. the 3
unknown on each element is discretized with the same set of basis functions, which are

ordered in the same way and grouped according to element, the matrix Z will be a block- 3
Toeplitz matrix. The second level of Toeplitz structure in this example is due to the choice

of subdomain basis functions; however, this type of structure can also arise with entire- I
domain basis functions in the analysis of frequency selective surfaces which are finite in 3
two dimensions.

A different matrix structure and a different type of redundancy show up in the 3
moment matrix when the current on a finite frequency selective surface is represented in

terms of entire-domain basis functions with Galerkin testing. It is easily verified that the I
product j ioGJjO is independent of the interchange of j o and j jo, i.e., J7"io J j .vT J -

This suggests that the inner product is unchanged if the functional forms of the basis and

testing functions are interchanged, provided the source patch and test patch remain the 3
same. For example, if the current on a finite array of thin horizontal dipoles is represented

in terms of a trigonometric series as shown in Fig. 4.6, then Z12 = Z21, Z13 = Z31, Z23 = I

Z32, etc., and Z1 5 = Z2 4 , Z1 6 = Z3 4 , Z2 6 = Z3 5 , etc.; i.e., each Toeplitz block is

symmetrical with respect to its diagonal. This property is illustrated in Fig. 4.7.

'4

Figure 4.6. Trigonometric basis functions used in the expansion of the I
current on a three-element frequency selective surface of finite
width.

I
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F Z11Z12Z13 ] Z14 Z 15Z 16 TZ 17 Z 18Z 191
Z3 .Z23~j Z25Z26j Z28Z29j

L • Z33.•• Z3 6.1 • Z39-

3 FZ41Z42Z431 J

U FZ71Z72Z73T

L:Z82Z83~ . . 1 .:1.
Figure 4.7. Matrix structure for the example of Fig. 4.6, showing only the

unique elements of the matrix (see text).

I Under certain conditions, it is possible to make use of reciprocity. If the skew angle £2 =

900, such that the integrations in the previous example are performed along the horizontal

lines On =- 2nn + ky, then for the even-even interactions, Z13, Z14, Z 16, etc., Ki and Kj are

3 real, and since G is an even function of a, then
-K:Kj j,--

ZiJ 2r L [ Jxjo(O,,On) G.x(a,p3n) Ixjo(a13n) eJ'ijda (4.6a)

-KiKj 

-"2- 2,,.2 Jxio Gxx JxjO cosxij da (4.6b)

and, therefore, Zji = Zij. In this particular example, this is true regardless of the particular

3 combination of basis and testing functions considered. Therefore, in addition to the

previous reductions, it is only necessary to compute the elements above or below the main

i diagonal. The resultant matrix is shown in Fig. 4.8.

i In addition to recognizing that many of the matrix elements are either identical or

otherwise simply related, large reductions in computation time can be achieved by

3 computing several matrix elements in parallel. Referring again to the expression for the

matrix elements for a finite-width frequency selective surface,I
I
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rZ11Z12Z13 TZ14Z15Z16TZ17Z18Z19 ] 6

L . 23 Z25Z26 Z28Z29j

6o I
S.Z33-L - Z36_-. •z39-

Figure 4.8. Matrix structure for the example of Fig. 4.6, showing the
unique elements of the matrix for 2 = 90' (see text).

I
-K2'Kj'-

'i 2,r iff L 0 G(~ )jjO(cx'1 3n)eL'O-Vx e 'i dc

the idea is to consider the product Ji0 GjjO as a core integrand and compute all of the

matrix elements at once for various values of (Xi - xj) and (yi - Yj). The evaluation of G at

a single point (a,f) requires solving two N layer transmission-line problems (one TE and I
one TM), and, depending on the structure of the program, calculation of j i and jj could 3
require several nested calls to several different function subprograms. By comparison, the

calculation of ec 4 xi" x)+jfl(yi - Yj) requires very little time. This strategy was described by 3
Pozar [32] in a recent paper on spectral-domain analysis of a finite microstrip-patch array of

thin conducting dipoles. I
Unlike when the method of moments is applied in the space domain, the interactions I

between the most widely separated pairs of basis and testing functions are the most difficult

to compute. This is due to the presence of the highly-oscillatory factor ela(xi- xj)+j fl ( yi - YJ)

in the integrand, whose rate of oscillation increases as the distances (xi - xj) and (yi - Yj)

increase. For the dominant self-terms of the matrix, this oscillatory phase factor is equal to I
one; therefore, calculating these terms requires the least amount of computational effort. If

I
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3 the integrations are done in parallel, such that all of the integrands are sampled more heavily

until each result satisfies the exit criterion, then the dominant self-terms will be the most

3 accurate.

Another possible means of reducing the computation time to fill the matrix is ba:sed on

U the observation that the integral is of the form of an inverse Fourier transform. If the

separations xi are all integral multiples of some value, then the FFT can be used to

compute all the interactions for a given pair of basis and testing functions simultaneously.

3 Since the FFT requires that the samples of the integrand be evenly spaced, this is equivalent

to ignoring the singularity. This strategy has been used by Ko and Mittra [33]. For free-

3 standing surfaces, the error involved in ignoring the singularity does not appear to be too

great.

U
I
I
1
U
1

I
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CHAPTER 5

NUMERICAL RESULTS 3
5.1 Reflection Coefficient for Periodic Surfaces 3

The parameter most widely used to characterize the scattering response of frequency

selective surfaces is the reflection coefficient, which is a measure of the reflectivity of the 3
surface. There are a few different ways of defining the reflection coefficient; therefore, it

is necessary to be very precise in the definition to avoid confusion.

If the generalized periodic surface of Fig. 5.1 is illuminated by a plane wave, whose 3
magnetic or electric vector potential is given by

{A}= ji(kix + kiy) + 70°z, 3
then the scattered electric field will be a discrete spectrum of plane waves of the form, 3

ES(z > zt) = (epq + eOO0p8Oq)e j (aPtx +fipqy)- oqZ, (5.1) 3
p,q = _,,

where (5mn is the Kroniker delta function. In this form, the scattered field can be 3
recognized as being composed of two partq: (1) the scattered field associated with the

vector constants epq is due to the induced current on the printed surface radiating in the I
presence of the dielect ic medium; and (2) the scattered field associated with er is the field 3
reflected from the dielectric medium with the printed surface removed.

The field at the air-dielectric interface z = z, and the induced current are related by a 3
spectral-domain Green's function, similar to the one derived in formulating the integral

equation, 3
I
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[E,,(z =z,) 1 X [ G XY i J,,(z=O0)1

I = 
1 (5.2)

where J is now known (or an approximation to J) as a result of solving the discretized

3 form of the integral equation. The derivation of the spectral Green's function is similar to

the derivation in Sec. 3.1, and the details are omitted here.Iz

Figure 5.1. Arbitrary periodic surface surrounded by an N-layer dielectric
medium.

I
To find the constants epq, the strategy is to take the Fourier transform of Eq. (5.1)

3 and match the two representations (5.1) and (5.2) at z = z. Recall that the current density J

is related to *he current density on a single element J0 by the following relationship

* 00

j(a,13)=J(a, 71)22T T SinQI ((a -- pq) 80 -- pq), (5.3)
'2S p,q = -

where apq and fPpq are given by Eqs. (2.14). Performing the indicated operations leads to

Sepqt e - Tt' qz ,4,"r2,5(a(- Cpq)t5(0l- flpq)

Ip,q=--oo

- p, G(apq,Ppq)Jo(pq,f0pq) 26 2 (a - apq)(0 flp- Opq),I ~ ~~~p,q = -oo n o2 i

or, equating the two series term for term,

I
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epq e T 1 G(apq,Ppq)Jo(Oxpq,Ipq ) (5.4) 3
To Tn~sinQ2

where epqt is a vector of the transverse (ie., x-y) components of epq. 3
To separate the scattered field into its TE and TM components, the field is represented

in terms of z-directed electric and magnetic vector potentials, 3
As(z > z ) =z Rpq e pqx P- -)/pqz -- gpq R Ipq (5.5a) 3

p~q =--*p,q=-*

Fs (z >- z t ) = z X Pq X = Rpq!pq, (5.5b)

p,q = -- p,q = --
TE TM

where R pq and R pq are complex-valued scalar constants. An expression for the electric

field is obtained by differentiating Eq. (5.5) according to,

Es = - V x Fs - j o  A s + . 1 V(V-As)

or, expanding this in Cartesian coordinates,

E [fq TE Icxapq'ypq RTM (5.6a)

y -[+Jfpq pq pq .] pq

,il L j, RpqVpq (5.6c)

p~zz q j o)& . p 5.c

Ej and Es are known quantities, given by Eqs. (5.1) and (5.4). Equations (5.6a)-(5.6b)

are therefore a system of two equations in the two unknowns RTE and RTM Solving for
pq pq

the unknowns, the result is

U
U
3
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q j[Ppq(epqx + erooxt3OpI5Oq) - apq(epqy + er0 &oP 3oq)]Rp ( 2q 2 (5.7a)

(apq + q)

RTM i[apq(epqx + erox(5Op45Oq) + Opq(epqy + erooy (Op 8Oq)] (5.7b)
R pq (0 (q5q)7b)

The reflection coefficients are defined as Ro for TE incidence and R00 for TM incidence.

3 For a strip grating, the reflection coefficients are defined in the same way. The

electric field is first expanded as a discrete spectrum of plane waves of the form,

Es(z : z,) (em + e 0m)ei(amx + ky- .,z, (5.8)Im
where

am +k, (5.9a)

5m = 4 2  k 2 (5.9b)

At z = zt, the tangential electric fields due to the induced current J are represented

3 symbolically as

-.- (z=z,) 1 G,, Gy Jx(z = 0)

- (5.10)

[Z::= z t ) L GYX GY IL Jy(z = 0)1_ 5.0

where
J((a-am) 5(I- kyi). (5.11)

b Ia(a -am) (P -J0 (

U Matching the two representations at z = z,

I 4r~2  0 e,,..e - I-z' 8(a - a.) (/3 - kyi)
M = -00

= b G(amkyi)Jo(a, )S(a- am)3(Q-kyi), (5.12)3M = -0
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from which it follows that
emt = -'b G(a,,kyi)jo(a) • (5.13)

If the scattered field is assumed to be composed of TE and TM-polarized plane-wave fields 3
derived from As and Fs, where

AS(z z1 ) = z TM (ax+ky) - r' z zRTM fr (514a)

Fs (z > zt) = Z RM e i(ax+ky) -,z = IRMi , (5.14b)

r) =- = -_JR

then 3
R= j[kyi(e,,., + e xOm) - am(ey +eySom)] (5.15a)

RTM = j[a,(e + eoxrSom) + kyi(emy + e'y80m)] (5.15b)
(a,+

j)eO

As before, ROTE and RoTM are defined to be the reflection coefficients for TE and TM 3
incidence, respectively.

If the incident field is derived from unit-amplitude vector potentials, the reflection I
coefficients defined here have the following properties:

1. The magnitudes of RpqTE and RpqTM may be greater than one, particularly for

fields scattered from the TM polarization into the TE polarization. 3
2. However, conservation of power requires that

I 0 1 < 1, for TE incidence, and
TMR00 I : 1, for TM incidence.

3. The reflection coefficients for a free-standing perfectly-conducting plane at z = 0 I

are TE

Ro -1, for TE incidence, and

R = +1, for TM incidence.

I
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5.2 Reflection Coefficient for Finite Surfaces

3 The reflection coefficients defined for periodic surfaces were carefully chosen to be

compatible with the definitions in this section. In the limit as the number of elements in a

3 finite frequency selective surface approaches infinity, the reflection coefficient defined for

the finite surface must be equivalent to the reflection coefficient defined for the periodic

I surface in order to make a direct comparison between the two.

Rather than attempt to justify each individual assumption, it is simpler to postulate a

reasonable definition for the reflection coefficient and verify numerically that it has the

3 desired properties. Since the reflection coefficient for a perfectly-conducting plane is equal

to +1, then, except for a minus sign for the TE polarization, the reflection coefficient

derived in the previous section can be interpreted as the complex amplitude of the plane-

3 wave field scattered by the surface in the specular direction divided by the complex

amplitude of the plane-wave field reflected from a perfectly-conducting plane. This is

essentially the definition that will be used for the finite array, with the language modified to

account for the finite nature of the scatterer.

The scattered field can be viewed as a superposition of two parts: Es, the field

scattered from the surface of the dielectric medium with the printed surface removed, and

Es the field due to the conduction current on the printed surface, radiating in the presence

3 of the dielectric medium. With the printed surface removed, the plane-wave field reflected

from the infinite dielectric stratification s s of the form

3 Es(z > z,) = erooe(ki x + kyiy) - 100z (5.16)

where the vector constant eoo is computed by the transmission-line method using the

techniques discussed in Chapter 3. For a finite-width frequency selective surface, this part

3 of the scattered field is approximately proportional to the field produced by

Es,(xYzt) = [ er°° OOZt ]eJ(kix + k3'Y)P( 'eTx 2 2 ' , (5.17)

I
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which is a physical optics approximation to the tangential fields at the surface of the

dielectric. Ne is the number of elements in a unit row across the finite dimension of the

array; T. and Ty are the x and y periodicities of the printed surface (Tx = Tr71 and Ty=

Tr,2sin2.). The truncation factors Px and Py(a,b) are zero except on [a,b] where they are

equal to one. The far field radiated by this surface field is computed using standard 3
techniques.

The remaining component of the scattered fields is due to the conduction current on I
the printed surface. To keep the proper proportionality with the first term, Ec is the field 3
due to a unit row of elements radiating in the presence of the dielectric support and is given

by a spectral-domain Green's function of the form,

j.(z z,) Gyy i (Z O) j

The far fields produced by this equivalent magnetic current sheet are obtained by evaluating

the Fourier transforms of the electric field at arguments which are determined by the I
observation angles (0,T). If the incident plane-wave field is incident from the direction

(0i,qoi), the reflection coefficient is defined as the total far-zone scattered field Es + Es ind c

the specular direction, (-Oi,qOi), normalized by Es , the far-zone physical optics field 3
scattered by a perfectly-conducting plate of area NeTx x Ty.

do(-o6, Oj) + Es(-o;, d I
Roo = , TE incidence (5. 19a)

Eo(-e.,~5

eo(-0i, Oj) + Eso(-Oi, 0j)
Ro= , TM incidence. (5 19b)

It is easily verified that, for TE incidence, the physical optics approximation for the current

on a perfectly-conducting plate produces a far-zone electric field that is entirely in the

direction, and for TM incidence, the far field is entirely it, the direction. 3
U
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This definition is easily extended to surfaces which are finite in both dimensions, and

the same definition can also be used for finite strip gratings, with the slight inconvenience

of having to define an arbitrary period "Ty." In addition, the following properties have

been verified numerically: if the induced current satisfies the periodic condition, i.e., if,

3 instead of the current on a finite frequency selective surface, the current on a number of

elements of a periodic surface is substituted for JO(x,y), then, (1) the reflection coefficient

is independent of the number of elements Ne, and (2), except for a minus sign for the TE

3 polarization, the value of the reflection coefficient is identical (to at least four significant

figures in all our sample calculations) to the value obtained by using the plane-wave

* definition.

* 5.3 Finite Strip Grating

5In Chapter 2, it was shown that for a finite planar strip grating illuminated by an

arbitrary plane wave, the current density J on the infinite plane could be represented in

3 terms of the current density JO(x) along the cut y = 0. In the transform domain,

J(a,J3) = 27jo(a)6(/ - ky).

I In Chapter 3, an integral equation for the fundamental unknown JO(x ) was derived, and

the spectral-domain method of moments ,A as applied to generate a matrix equation; i.e., if

JO(a~)=Xci /a) ,Uj 1

then

j= 1

In Chapter 4, the essential theoretical and numerical considerations were discussed that

pertain to implementing the spectral-Galerkin equation efficiently and accurately on the

3 computer. The only remaining steps involve choosing a linearly-independent basis {jj} for

I
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expanding the unknown and solving the resultant system of equations for the coefficients

Cj).

The transverse current Jxo is discretized using the trigonometric series 3
JXk(X) = si nj- ((x -Xk) + h) PX(xk - h, xk + h), k = 1, 2, .... Nsin  (5.20)

and the parallel component of the current JyO is represented by functions of the form,

Tk-4( (x-.xk)h ) U
jyk(X) Px(Xk - h, xk + h), k = 1,2 .. , Ncheb, (5.21)V /1 h x 2

where Tn(x) is the Chebychev polynomial of order n, I
Tn(x) = cos(n cr :- ! /))

h is the half-width of the strips (h = a/2), xk is the position of the basis function relative to

the origin, and the truncation factor Px, which limits the extent of the functions to the 3
surfaces of the conductors, is defined as

Px~l' z)f 0, otherwise "

Note that each term in the expansion of Jyo has a built-in edge singularity to model the 3
physical behavior of the current. The first few terms of this series are shown in Fig. 5.2.

The Fourier transforms of the basis functions are [34]

xk,(a)= -jh eAY){ sinc( - ah)-(-l'ksinc(L + ah)}eJ tk (5.22) 1
Iyk(a) = (-j)k- 7rh J(k- 1)(-ah) eJ .k, (5.23) 3

where j = -1, sinc(x) = sin(x)/x, and Jn(x) is the nth-order Bessel function of the first

kind. I

I
I
I
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I2
*C 0

I ~~~-2 ----
-1.0 -0.5 0.0 0.5 1.0

X
I Figure 5.2. Chebychev polynomials modified to incorporate the edge

singularity.U
To verify that these basis and testing functions have sufficient smoothness to

guarantee convergence of the inner products, the asymptotic behavior of the product

I#(cc)G(at,kyi)jj( 0 ) is examined for each combination of basis and testing function, i.e.,

R,,(a) = I.,k(c)G.,(a,kY)I.,k(cx)

RX~)= JXk(a)GxY(a,ky)iyk(a)

RYY(cx) = jyk(a)Gyy(a~k Y)jyk(a)

The two sin(c)/a terms combine in such a way that the net convergence of Jxk(O) is not

1/a, but 1/o, . This might have been expected, since the trigonometric basis functions have

the same degree of differentiability as the triangular basis function, whose Fourier

transform is sin2(a) which is well known. The asymptotic expression for Jn(x) is given

* by

Jn(x) - / cos x - ."

I
I
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If each term in the product jit(a)G(a,kyi)jj(a) is replaced by its asymptotic form, then,

except for a constant, the asymptotic expressions for the integrands Rxx, RAY, and Ryy are

given by

I a 2 1 1R (a) 4 a2  2 (5.24a)

a 2k a a
Rxy,) - a ' + k2 V a 02 ' 52b I

k 1 1 (5.24b) 3
a a 2 + k y2

R2'(a))- )  2  (5.24c)

For this choice of basis and testing functions, the integrands and summands converge at

least as fast as 1/a.

The inner products formed by applying the spectral-domain method of moments

contain either infinite summations or integrals with infinite limits of integration. If no 3
extrapolation techniques are used to predict the contribution of the tail regions [35], the

summations or integrations are truncated to a finite area of the a-P plane. When truncating

the spectrum, however, the limits of summation or integration must encircle the highest

spectral component of the current; otherwise, the moment matrix will be ill-conditioned I
[36]. For the trigonometric series, the peak of the highest spectral component of the 3
current occurs at a = 2 .Therefore, the first opportunity to truncate the spectrum is at

the first zero beyond the peak or at (Nsin + 2)h. By a similar argument, the spectral

bandwidth of the Chebychev series is approximately (Ncheb + 1)f. In all of the results in

this section, the spectrum has been truncated at twice the maximum of these two numbers. I
Electromagnetic scattering from a free-standing periodic strip grating has been solved 3

exactly by Weinstein [10] using the generalized Wiener-Hopf technique. Figure 5.3 gives

an idea of the accuracy of the numerical results by comparing the magnitude of the 3
reflection coefficient computed by Weinstein's method with the results of applying this U

I
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theory to the same problem. The incident electric field, which is incident normally on the

I surface, is polarized either parallel or perpendicular to the axes of strips. The numerical

* results have been computed assuming four trigonometric basis functions and four modified

Chebychev polynomials to represent the unknown. Since the incident angles (ei,qPi) =

(0,0) are not allowed when computing the incident field by the vector potential method,

(OiiPi) = (0.10, 0.10) have been used for the numerical calculations. The worst-case

I deviation of the results is 4.3 percent.

3 To illustrate the effect of truncation, Figs. 5.4 and 5.5 show the frequency response

of the periodic strip grating of Fig. 5.3, truncated to 3, 7, and 15 strips. This case was

3 considered by Cwik and Mittra [9] using the equivalent of 64 subsectional basis functions

per strip, for the two polarizations of the incident field. In the 15-strip example, this

I requires filling a 960 x 960 matrix. The results of Figs. 5.3 and 5.4, which are in excellent

agreement with the results of Cwik and Mittra, were computed using 8 basis functions per

strip, or by filling a 120 x 120 matrix. This underlines the importance of choosing a basis

set that is capable of modeling the current in a minimum number of terms.

As pointed out by the previous investigators [9], the effect of finite dimensions is

greater when the incident electric field is polarized parallel to the truncation boundary, i.e.,

when the dominant component of the induced current is flowing parallel to the edge of the

finite array. In Fig. 5.4, where the incident electric field is polarized parallel to the

3 truncation boundary, the fields scattered by a finite strip grating can be significantly

different from the fields produced by an equal number of strips in an infinite array; this

3 difference becomes less as the number of strips is increased. Conversely, when the

incident electric field is polarized perpendicularly to the edge of the array over this

I frequency range, the difference between the periodic solution for the reflection coefficient

3 and the finite solution is minimal, even for as few as 3 strips. Because of the properties of

the reflection coefficients mentioned in Sections 5.1 and 5.2. the close agreement in Fig.

I
I
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TE (Parallel) Polarization

~I
1 00

090 I
0.80 0 exact 3

.80. periodic

0.70

0 .6 0 3 I .t . | . . , . . t .
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frequency (GHz)

(a) I
TM (Perpendicular) Polarization

1.0 -T--- r

0.8

0.6 I
0 exact

0.4 * periodic~I
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0.

3 6 9 12 15 18 21 24 27

frequency (GHz)

(b) 3
Figure 5.3. Comparison of numerical and exact reflection coefficients for a

periodic strip. grating: strip width a = 0.5 cm, periodicity b =
I cm, (a) Einc polarized parallel to the axis of the strips,
(b) Einc polarized perpendicular to the axis of the strips.
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*Parallel Polarization

I °1.00

C0.90 o, periodic
a 7 strips

0.80* 15 strips

I_ 070
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frequency (GHz)
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I
Parallel Polarization
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_ - rS periodic
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frequency (GHz)
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I Figure 5.4 (a) Magnitude and (b) phase of the computed reflection
coefficient for a plane wave incident on several free-standing
strip gratings of 3, 7, and 15 strips, compared to the periodic
result: TE polarization, strip width = 0.5 cm, periodicitv =
1 cm, (Oj,('i) = (0.10, 0.1°).I
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Perpendicular Polarization 7

10 3
0,8

06 0 periodic
* 3 strips

0.4 . 7 strips0 .a

* 15 strips
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I-0

Perpendicular Polarization
2 100

- 80

0 periodic

60 3 strips
a 7 strips
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0 40
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frequency (GHz)

(b) I

Figure 5,5. (a) Magnitude and (b) phase of the computed reflection I
coefficient for a plane wave incident on several free- standing
strip gratings of 3, 7, and 15 strips, ccnpared to the periodic
result: TM polarization, strip width = 0.5 cm, periodicity =
1 cm, (A, Pi) = (0.10, 0.10). I
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5.5 indicates that, for perpendicular polarization, the field scattered in the specular direction

by a finite number of strips can be accurately approximated by the field produced by an

3 equal number of strips whose currents have been obtained from a periodic model.

One of the reasons why the periodic approximation is valid for a finite array is that the

3 edge effect is localized. This is illustrated in Figs. 5.6(a) and 5.6(b). A periodic surface is

characterized by the fact that the induced current on any one cell differs from the current on

Iany other cell only by the uniform progressive phase shift of the incident field. Therefore,

3 the magnitudes of the current densities on a number of cells will be identical in both shape

and amplitude. If the finite-array problem is solved using the same approximations that

i were used in the periodic problem, then any deviation in the behavior of the current from

this uniform amplitude and shape is entirely due to the edge effect. A plot of the magnitude

of the current density across a number of cells of a 15-element strip grating is shown in

Fig. 5.6(a) for parallel polarization and Fig. 5.6(b) for perpendicular polarization. Only

half of the cell currents are plotted since the incident field and geometry are symmetrical.

I Also shown are the corresponding currents on a periodic strip grating. From these results,

it is evident that there is a locally-confined edge region that penetrates only about three

i strips into the interior of the array. As the array becomes larger, the edge region occupies a

smaller proportion of the total area. The interior region, however, where the currents

closely match those of the periodic array, occupies a larger proportion of the total area.

I
5.4 Crossed Dipole Element

I The crossed dipole element was originally intended to be a simple extension of the

linear dipole. It had been known for some time that for an incident plane-wave field of the

proper polarization and frequency, a periodic array of thin conducting dipoles was capable

3of reflecting the field as though it were a sol'd sheet of perfectly conducting metal [37].

i
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Parallel Polarization
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Figure 5.6. Dominant currents induced on a 15-element finite strip gatingI
along the cut y = 0: (a) parallel polarization, (b) perpendicular
polarization. Strip width = 0.5 cm, periodicity = 1 cm,
o= (010, 0.1 1

(b) I
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'The crossed dipole was an attempt to make this effect independent of the polarization of the

incident field.

U The crossed dipole has been a popular choice in applications requiring circular

polarization. For certain skew angles, the crossed dipole array has the property that at

normal incidence, the surface looks the same to each of the two linear components of a

circularly-polarized incident field. On reflection or transmission, the relative amplitudes

and phases of the two components are preserved, and the scattered fields are circularly-

3 polarized as well. Examples of other elements having the same property are Jerusalem

crosses, square patches, and rings. But because of the ease of fabricating crossed dipole

5 arrays and the apparent simplicity of modeling them analytically, most of the experimental

and theoretical work has been conducted with crossed dipole arrays [8, 14, 17, 38-40].

However, the apparent simplicity of modeling periodic arrays of crossed dipoles was

3 deceptive. This was due to the fact that the current induced on the two perpendicular arms

of the cross was not simply the superposition of the currents on two isolated linear dipoles.

5 In addition to these, another term was present, sometimes referred to as the "crooked

mode," due to the mutual coupling between the two arms. In 1977, King published his

I solution for the zero-order currents on the cross [41], which included the new term, and

soon afterward, Pelton and Munk showed that it was the presence of this term that caused

the anomalous antiresonance that had been observed in the frequency response of crossed

3dipole arrays for oblique incidence [39].

The problem was later revisited by Tsao and Mittra [8], who incorporated the so-

I called "crooked mode" by using a special junction basis function. The basis functions used

here are the same as those used by Tsao and Mittra in their treatment. Referring to Fig.

5.7, if L is the length and W is the width of each of the two dipole members, then the basis

3 functions can be expressed in the form

jxk(x,y) = sin L + 2Px( 2 L PY2 , k = 1, 2, ... , Nsin  (5.25a)

U
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jyk(Xy) = sin[ -(y + )]P-. k = 1, 2, .. N (5.25b) 3
jxy, = x sgn(x) cos(-P . ( I

- y sgn(y) cos- 5c) 3
where only the basis functions at the origin have been shown. The truncation factors

Ppia.b) and P)(a,b) are defined ! o oe zero except on the interval [a,b], where they are equal I

to one. 3

Y

T 77

w I

The Fourier transforms of the basis functions are 3

(_ -- - 2 ) (5.26a)

2 (OW sinE k + aL'

kI) sin(W { sin( k +P

2 e2 22
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PT) W( 2 (2 2

j (a, P) =~ jL V i(/.K)1 cT 2 +2 1 .52 6 c)

I -~~ sin(4a 1 - Cos(3 1- cos( z+ L)

L (7a1) 21 L2L f+'2) I
I The junction function is only included to provide a minimum-term representation for

3 the current on the cross. Basis functions of either subdomain or entire-domain type are

capable of modeling the current at a junction, provided the number of terms is sufficiently

high. By using the junction function, the object is to reduce the number of unknowns from

approximately 10 per wavelength to approximately 2.5 per wavelength.

These basis functions give the weakest form of convergence. Asymptotically, the

Fourier transform of the junction basis function decays as -L 1. Combining this with thea 0 -3asymptotic expression for the spectral Green's function, the product ji!Gj1 decays only as

fast as - - for the junction-junction interaction. If /3 is held constant while an integration

is performed over a, which is the procedure suggested by Eq. (3.47), the inner product

3 will not converge. However, in polar coordinates [42], where a = kpcosT and P3 = kpsing,

the worst-case convergence rate is 1/k Psin (p, i.e., except for along the radius p = 0, the kp

integration converges.

5 Sample results using this basis set are shown in Fig. 5.8, for a geometry similar to

one in the literature [15]. The geometry is a periodic array of cross-shaped conducting

I patches (T771 = Tr72 = 1 cm, L = 0.6875 cm, W = 0.0625 cm, 2 = 90 deg) printed on a 3

mm dielectric substrate of relative permittivity er = 4 - j.02. The frequency response has

been computed twice, once using rooftop basis functions (12 per arm), and once using the

3 entire-domain functions of Tsao and Mittra (2 per arm plus the junction function). The

agreement between the results is quite good. It is interesting to note that the addition of aI
I
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small amount of loss in the dielectric region prevents the reflection characteristic from 3
reaching a maximum of 1.0 at resonance.

If the same element and lattice are assumed for frequency selective surfaces of 3, 7, 3
and 15 patches wide, most of the difference in the plot of the reflection coefficient occurs

near the resonant frequency. Figures 5.9 and 5.10 show the variation in the reflection S
coefficient for different array sizes. As before, the greatest difference between the finite a
and periodic results occurs for the smallest number of elements, the difference becoming

less as more elements are considered. When the dominant component of the current is 3
flowing parallel to the edge of the array (TE polarization), the edge has more influence on

the reflected fields; when the dominant current is flowing perpendicularly to the edge of the I
array, the edge effect is less significant.

As a second example, the free-standing surface of Pelton and Munk [39] is

considered, which is periodic in skewed coordinates: T771 = 2.44 cm, Tq2 = 1.725 cm, L 3
= 1.51 cm, W = 0.044 cm, . = 45 deg. Figure 5.11 compares computed values of the

reflection coefficient from a periodic surface and their measured results for oblique U
incidence (Oi = 300), showing the characteristic antiresonance of the crossed-dipole array.

For this example, two trigonometric basis functions per arm plus the junction function were I
used to approximate the current on the cross. The Floquet harmonics were summed out to 3
a point which was twice the spectral bandwidth of the highest (trigonometric) comporent of

the current. Four basis functions per arm reproduced their results exactly. 3
If the periodic surface of Fig. 5. 11 is truncated to 15 elements wide, the effect on the

reflection coefficient is shown in Fig 5.12. The reflection coefficient for the periodic I
surface is shown for comparison. Both results were computed using the same 3
approximations: two trigonometric-type basis functions per arm plus the junction function,

encircling that portion of the spectrum that was less than twice the spectral radius of the 3
(trigonometric) basis functions. I

I
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Figure 5.8. (a) Magnitude and (b) phase of the reflection coefficient for a
periodic array of cross-shaped elements on a dielectric
substrate, computed with two different sets of basis functions.
T77 - Tr2 I= cm, L = 0.6875 cm, W = 0.0625 cm, 2 -
90 deg, ( i,(pi) = (0.10, 0.10).I
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Figure 5.9. Computed values for the reflection coefficient for finite-width
frequency selective surfaces of 3, 7, and 15 patches on a
dielectric backing. Same element and lattice as in Fig. 5.8,
TE polarization (Einc = 5Ey), (Oi,(Pi) = (0.10, 0.l'):
(a) frequency range 8-18 GHz, (b) 12-14 GHz. U
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I Figure 5.10. Computed v-'ues for the reflection coefficient for finite-width
frequency selective surfaces of 3, 7, and 15 patches on a
dielectric backing. Same element and lattice as in Fig. 5.8,
TM polarization (Einc =Ex) (Oi, qi) = (0.10, 0.10):
(a) frequency range 8-18 GHz, (b) 12-14 GHz.I
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Figure 5.11. Comparison of computed and measured data for the

frequency selective surface of Pelton and Munk [39]:
periodic array, TM polarization (Einc = Ex), (O, (pi) = I
(300, 00).
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Figure 5.12. Computed reflection coefficients for a 15-element frequency
selective surface of finite width and its periodic counterpart: U
TM polarization (Einc =*Ex), (Oij,(pi) = (300, 00). I

I



I
ii 87

u These results show the error in using the periodic approximatio' to predict

electromagnetic scattering from a finite array of various sizes, when the frequency of the

3 incident field is near the first resonance of the element. If a finite-width array is 15 patches

wide, the error in the scattered field using the periodic approximation is on the order of two

I per cent. However, if the frequency is much lower than the first resonant frequency of the

element, a low-frequency resonance can be excited on the array, as shown in Figs. 5.13

and 5.14, even when there is no direct electrical connection between the two edges. In

3 both of these examples, the array is embedded between two identical dielectric layers of

relative permittivity 4 - j.02 and thickness t = .5 cm; In the first example, the array is

exactly two wavelengths wide at the frequency of the incident field. The two-wavelength

envelope is plainly visible in the magnitude plot. In the second example, the array is four

wavelengths wide at the frequency of the incident field. Since the edge effect is not

glocalized in this frequency range, approximating the fields from a periodic-array

formulation would be significantly in error. Such models cannot predict the interaction of

3 two edges, which is clearly present in Figs. 5.13 and 5.i4.

None of the previous examples illustrate the versatility of the multilayer Green's

I function developed in Sec. 3.1. As a final example, sample results for a periodic surface

embedded in a four-layer dielectric medium are presented. The geometry is shown in Fig.

5.15, which was described by Contu and Tascone [43]. The element is a crossed dipole,

3 whose lattice and dimensions are given by T771 = 0.65 cm, Tf72 = 0.46 cm, L = 0.555 cm,

W = 0.015 cm, 12 = 45 deg, as defined in Fig. 5.7. The results are presented in terms of

I the magnitude of the reflection coefficient, which, for frequencies low enough that only one

propagating mode exists in the free-space regions above and below the surfce, can be

accurately approximated by

I I T,= 1 - (R00)2, for TE incidence, and (5.27a)

TMTM2'52bI Too I = 1 -(Roo), for TM incidence. (5.27b)I
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Figure 5.13 Low-frequency resonance on a finite array of 15 cross-shaped

conducting patches embedded between two identical dielectric
layers. T771 = Tr77= 1.6 cm, L = 1.51 cm, W = 0.044 cm, 2
= 90 deg, Eri, Er2 = 4 -j.02, tI, t2 = 0.5 cm, frequency2.5 GHz, (0i,9i) = (10, 10); (a) magnitude, (b) phase.
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Figure 5.14. Low-frequency resonance on a finite array of 15 cross-shaped
conducting patches embedded between two identical dielectric
layers. T 1 = T72= 1.6 cm, L = 1.51 cm, W = 0.044 cm, Q
= 90 deg, E, '^ = 4 - j.02, tI, t2 = 0.5 cm, frequency -

5 GHz, (l, = (2P, 1°): (a) magnitude, (b) phase.I
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t 2

Z I t1  4

. . ..- 3 ----- I
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t2 =7.5 mm Kevlar Honeycomb Er = 1.05 3
t 3 = 0.18 mM Kevlar Er = 4.1

r4 = 0.05 mm Kapton Er = 3.2 1
Figure 5.15. Four-layer dielectric medium (Contu and Tascone [43]).

The numerical results of Fig. 5.16 were computed using four trigonometric-type 3
basis functions on each of the two arms plus the junction function. For the interactions that

do not involve the junction basis function, the inner products were evaluated by truncating 3
the spectra at eight times the highest spectral bandwidth of the trigonometric basis

functions. For those matrix elements that involve the junction basis function, the inner I
products were evaluated by summing out to sixteen times the highest spectral bandwidth of 3
the trigonometric-type basis functions.

The discrepancy between the two results at higher frequencies can be reduced for 3
the TE polarization by including more basis functions in the expansion of the unknown.

However, this does not explain the discrepancy for the TM polarization, for which the I
addition of up to twenty basis functions per arm does not improve the agreement between 3
the two results. The accuracy of these results has also been confirmed by an independent

program using twenty rooftop basis functions per wavelength. The difference might be 3
I
I



I
* 91

TE Polarization3 0

-2o .-

r -- 0--- Contu & Tascone
--6 -- calculated (periodic)

r -8- 
-J

_ _ _ _ -*1_

I 10 10 20 30 40

frequency (GHz)

I(a)

I TM Polarization

" - -2

I- 0

V -4 --
, - Contu & Tascone

I' 6 4-- calculated (periodic)= -6 ,

-8

[ -10 C
0 10 20 30 40

frequency (GHz)

3 (b)

Figure 5.16. Computed values of the transmission coefficients for the
geometry of Contu and Tascone [43]: (0,(p) = (300, 45').
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explained by one of the following facts. (1) Unlike the paper by Contu and Tascone, no

attempt was made here to incorporate the edge singularity in the representation for the I
current. This is usually not a significant source of error for narrow elements. (2) Since 3
Contu and Tascone have employed the scattering-matrix approach to incorporate the

dielectric support, perhaps the difference can be blamed on the fact that typically a large 3
number of Floquet space harmonics must be included in the scattering matrices as the layers

become extremely thin, as they are in this example. I
I
I
I
I
I
I
I
I
I
I
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* CHAPTER 6

3 ARBITRARY INCIDENCE AND NONUNIFORM ARRAYS

3 When a frequency selective surface is considered to be finite, the vector-Floquet

nature of the fields vanishes, i.e., the scattered field is no longer a discrete spectrum of

3 plane waves, regardless of the nature of the incident field. In this case, it is not necessary

to restrict one's attention to plane-wave sources, or to truncated versions of periodic

surfaces. Arbitrary incident fields can easily be treated in the context of finite arrays, and

3 all of the tools that were developed to predict the currents on uniform finite arrays are

directly applicable to nonuniform arrays. The designer is therefore capable of modeling the

3 effects of varying the size and shape of the elements, as well as the array lattice, allowing

more flexibility to achieve his design goals. The reasons for doing so will become apparent

I as we proceed.

U For most of the unit cell geometries used in practice, the null frequencies in the

reflection or transmission characteristics are very sensitive to the incident angles of the

3 incident field. Since FSS structures are typically narrow band, it is essential that a surface

be designed for the incident angles that exist in a given system. However, in numerous

U practical situations, the incident field is not a plane wave, and an entire range of incident

angles exists at the surface of the array. This is the case, for example, when a frequency

selective surface is in the Fresnel field of an electromagnetic horn. In this chapter, the

3 effects of a non-plane-wave source will be modeled using a very simple and natural

extension of the plane-wave situation, demonstrating that a serious degradation in

3 performance results when a realistic source is used. A method is proposed to compensate

I
U



for the effects of non-plane-wave illumination by tapering the geometry of the surface

9 4 

1

The problem that will be considered is a dichroic subreflector in an offset 3
configuration. Because of their ease of manufacture and analytical treatment, planar, rather

than hyperbolic, surfaces are often used in this application. In order to isolate the I
significant variables and to reduce the problem to a manageable size, the analysis is

performed for a frequency selective surface of finite width, permitting the incident field to

vary in a non-plane-wave fashion only along the finite dimension of the array. The x

variation of the field is arbitrary, but the y variation is assumed to be the phase dependence

associated with a uniform plane wave. The geometry is illustrated in Fig. 6.1. In this 3
case, the source is closte enough to the array that the incident field cannot be considered a
plane 

wave. 

I

I

I

IL X
- NeT-

Figure 6.1. A finite-width, free-standing array of y-directed thin dipoles
illuminated 

by an electromagnetic 

horn.

The application of the spectral-Galerkin technique results in a matrix equation of the
form 

, 

II

I

I
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2 rT'2 in2j= I n=-- Gap) jaPd

=f- f j(xj) Er(x,y) dxdy, i = 1,2, .... (6.1)

For plane-wave excitation, the kernel of the double integral on the right-hand side of Eq.

(6.1) is of Fourier-transform type, which allows the integrations to be carried out

3 analytically (cf. Sec. 3.5). This prompts us to write an arbitrary field in terms of a Fourier

series, which, for the one-dimensional case of interest to us, takes the form

inc(XY = Zky_ 21re,

E, (x,y) I eY em eik.' , kxm = 2 , (6.2)3 m=-M NeTx

where Ne is the number of elements, T is the average period along the x axis, and NeTx is

3 the width of the array. The vector constants em are determined in the usual manner by

multiplying both sides of Eq. (6.2) by the complex conjugate of the exponential term and

E integrating over the width, which may be done for all em in parallel via the fast Fourier

transform. When this representation is substituted for the incident field, the two-

dimensional integrations on the right can be done analytically, as before, resulting in a

3 simple series expression for the right-hand side. It should be emphasized that the

numerically-intensive process of filling the moment-method matrix is done only once, and

3 the resultant system of equations is solved using a composite right-hand side.

3 In order to determine the effect of non-plane-wave incidence on the scattered field, the

reflection coefficient is defined as the far-zone scattered electric field in the specular

3 direction due to a unit row of dipoles, normaliztd with respect to the physical optics

scattering of a perfectly conducting sheet of the same physical area. Since the incident field

3 has been decomposed into a spectrum of plane waves according to Eq. (6.2), the

calculation is easily performed. As in the periodic case, the magnitude of the reflection

coefficient reaches a maximum of 1.0 at the element resonances.

I
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As an example, the x variation of the incident field is assumed to be the H-plane cut

of the far-field pattern of an E-plane sectoral horn. It is important that the reader realize that

the far-field pattern was chosen only for convenience in order to give a realistic model for 3
the magnitude aid phase distribution of the incident field on the array. The horn model is

described by Balanis [44], in which the magnitude distribution of the fields at the mouth of 3
the horn is assumed to be the same as the distribution for the dominant TE1 0 mode in the

feed waveguide, and the phase distribution is assumed to be the phase distribution of a I
cylindrical wave emanating from the apex of the horn (see Fig. 6.2). The far-field pattern 3
of this aperture field is computed using standard techniques, where the integrals are

evaluated in terms of cosine and sine Fresnel integrals. 3
I

I

Figure 6.2. F-plane horn. I

The frequency selective sufface chosen for the numerical study is a finite-width

version of the periodic surface described by Ott et al. [37]. The unit cell is defined in Fig. I
6.3, where T =T -- 1.78 cm, L = 1.27 cm, W = 0.127 cm, 1"2 = 90 deg Fifteen

y-directed thin dipoles are assembled along the x axis and then replicated in a periodic

I
I
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y

y! I

Figure 6.3. Unit cell in a dipole array.

I fashion along the positive and negative y axes to generate the complete surface. The

elements are assumed to be thin enough that the transverse current on each element (i.e.,

3 Jx ) is negligible, as well as the x variation of Jy. As a result, the operator is discretized

using rooftop basis functions and Galerkin testing.

I The dimensions of the horn are a = 0.5A, b = 0.25A, bl = 2.75A, P1 = 6.OA at

3 10 GHz, which are held fixed as the frequency is varied. The phase center of the horn is

located along the radial line (0,9) = (300, 1800), at a range of 26.7 cm from the origin, as

3 defined in Fig. 6.1, and is oriented so that the incident field is parallel to the elements. For

these dimension,, the effective incident angles are 0 = 00 at the left edge, 0 = 30' at the

3 origin, and 0 = 49.1' at the extreme right edge of the array. A plot of the incident field

distribution along the x axis (magnitude and phase) is shown in Fig. 6.4, at a frequency of

10 GHz, and assuming ky = 0. The maximum field intensity occurs at a point which is

3 midway between the left edge, where the horn is closest to the array, and the origin, which

is along the maximum of the horn's field pattern. The change in slope of the phase plot is

3 due to the change in effective incident angle on the array.

The power reflection coefficient for a 15-element array illuminated by this incident

field is shown in Fig. 6.5. Also shown is the reflection curve for a periodic surface3 iluminated by a plane-wavc field incident from (19, (p) = (300, 1800).

I
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Figure 6.4 (a). Magnitude distribution of the incident field on a finite-width

array: frequency = 10 GHz, (0,q') = (300, 1800), range =

U26.7 cm, ky 0.
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Figure 6.4 (b). Phase distribution of the incident field across a finite-width 3
array: frequency = 10 GHz, (9,(p) = (30c-,180'), range =
26.7 cm, ky = 0.
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Uniform Array
I I • I

Z~ 1.0
0 periodic, plane-wave inc.

0.8 * uniform array, EM horn

o 0.6

I0.4
0,2

I 6 0 2,I,

. 0.0 ''8 9 10 11 12

frequency (GHz)I
Figure 6.5. Power reflection coefficient versus frequency: plane-wave

scattering from a periodic surface, and scattering from atapered finite-width FSS of 15 elements due to an incident

field that varies as the H-plane cut of an E-plane sectoral horn.I
As is evident from the figure, non-plane-wave illumination of the surface causes significant

distortion in its reflection curve. About ten per cent of the available power is lost at

3 resonance and about 20 per tent of the bandwidth.

The source of the problem appears to be the change in effective illumination angle on

3 the array. Figure 6.6 is a plot of the resonant frequency versus incident angle for the

element used in this example. The resonant frequency Ehifts from 11.2 GHz at 0 = 0' to

9.25 GHz at 0 = 50. Since the half-power bandwidth of the stop band is I GHz at 0 =

3 300, a 2-GHz shift in the resonant frequency over the range of incident angles on the array

causes serious distortion in the frequency response. Locally, each dipole is resonating at a

3 different frequency, due to the different effective incident angles at each point on the array.

As a remedy, the idea is to design each cell as though it were the unit cell of a periodic

surface illuminated by a plane wave at the effective incident angle seen by that particular

I
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Figure 6.6. Shift in resonant frequency for the element of Ott et al. [37]. 3
cell. In the 15-element example, unit cells are designed for 15 periodic surfaces illuminated I

by plane waves at 15 different incident angles, such that they all resonate at the same center 3
frequency. The 15 unit cells obtained in this manner are assembled to construct the 15-

element -ray, and the result is tested in a finite frequency selective surface. In the design 3
stage, however, only the horizontal cell sizes and element lengths are permitted to vary,

while the vertical cell size Ty and element width are held constant. U

In designing the 15 cells that compose the finite array, two methods were used. A

design frequency is chosen, at which all of the elements of the finite array were to become

resonant. In the first method, both the lengths and spacings of the elements were scaled by 3
the ratio of the design frequency and the resonant frequency at the dipole's effective

illumination angle. In the second method, only the spacings between the elements were I
adjusted, according to the above ratio, leaving the lengths fixed. After assembling the 15

unit cells obtained in this manner and computing their frequency response in the finite

array, the second method was found to give somewhat better pe,-crmance than the first 3
method, and its reflection curve is shown in Fig. 6.7. Hence, as a result of tapering the I

3
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surface geometry, all of the power is reflected at resonance as before, leaving only a slight

I reduction in bandwidth, which may be recoverable through further optimization.

I Nonuniform Array

I•_ 1.0
- periodic, plane-wave inc.

0.8 * tapered array, EM horn

o 0.6

U0.4
3 0.2

0.0 8 9 10 11 12
frequency(GHz)

3 Figure 6.7. Power reflection coefficient versus frequency: plane-wave
scattering from a periodic surface, and scattering from a
tapered finite-width FSS of 15 elements due to the
electromagnetic-horn incident field.
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CHAPTER7 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 3
The analysis of finite frequency selective surfaces is still in its infancy: this thesis is 3

the result of one of the first attempts at modeling finite arrays. In it, the formulation of the

scattering problem in the spectral domain has been presented, the essential considerations 3
involved in implementing the spectral-Galerkin equation have been discussed, and a few

selected geometries have been analyzed to illustrate the conclusions. Motivated by existing I
applications, numerical modeling of generalized sources and nonuniform frequency 3
selective surfaces has also been done.

The effects of finite dimensions on the performance of frequency selective surfaces 3
have been classified into two frequency regimes. At frequencies near the first resonance of

the element, the edge effect is localized and extends from three to seven cells toward the I
center of the array. Sample calcula:lons show that the component of the current flowing

perpendicularly to the polarization of the incident field is significantly enhanced near the

edges; however, for more than 15 elements, the periodic approximation gives about two

per cent accuracy in the scattered fields. At lower frequencies, an edge-to-edge resonance

can be excited on the array, even when there is no direct electrical connection between the I
two edges. In this regime, the edge effect is obviously not localized, and it would be

impossible to accurately predict the scattered fields from such a surface using infinite

models. 3
In Chapter 6, it was shown that the use of a realistic source model, such as the near

field of an electromagnetic horn, caused serious degradation in the frequency response of a 3
particular finite frequency selective surface. Since the resonant frequency of most

I



I
1 103

frequency selective surfaces is strongly influenced by incident angles, it was postulated that

U the poor performance was due to the presence of a wide range of effective incident angles

on the array. A method was therefore suggested to continuously vary the lattice of the

array in order to force all of the elements to resonate simultaneously at a given frequency.

5 Based on this theory, a nonuniform frequency selective surface was designed and modeled

in the presence of the horn, and it was shown that continuously varying the surface

3 geometry was an effective means of alleviating the distortion.

Looking ahead to possible areas of research in frequency selective surfaces, it is

appropriate to mention first of all that this is not the last word in finite frequency selective

surfaces. Because of the large amounts of computer time required for some geometries and

limitatiohs in computer storage, the two-dimensional examples were limited to certain thin-

3 patch geometries that could be analyzed with a small number of unknowns. The next

generation of computers will make many of the assumptions used here unnecessary.

IFurthermore, all of the results presented in the thesis were generated with special-purpose

3 routines. A general-purpose program capable of modeling arbitrary finite frequency

selective surfaces with arbitrary incident fields would be a valuable contribution.

3 The simplifications and restrictions imposed at the beginning suggest other possible

areas of research. Many applications that require wider frequency bandwidths will need to

I incorporate two or more printed surfaces to meet those requirements. While this problem

3 has been solved satisfactorily for periodic surfaces, numerical modeling of multiple layers

of finite frequency selective surfaces has never been attempted. Computation time and

3 storage requirements increase in proportion to the number of layers squared, if the

multilayered problem is solved at once. However, a procedure analogous to the scattering

3 matrix approach for periodic surfaces would reduce the demands on computer resources.

A second area of research is suggested by the fact that in this work, only the printed

surface was assumed to be finite in some sense, while the surrounding medium was

3 assumed to be an infinite medium of uniform homogeneous dielectric layers. This made it

I



I
104

possible to derive the analytical Green's functions. If the guided modes in the dielectric

wave guide carry sufficient energy, particularly for oblique incidence, then truncating the I
dielectric may have a significant effect on the scattered fields. How much effect, or under 3
what conditions this effect may be substantial, is not known. Incorporating the effects of a

finite dielectric slab will involve the equivalent of discretizing the polarization current in the 3
dielectric medium and solving simultaneously for this current and the conduction current on

the printed surface. Some of this work has already begun at the University of Illinois by I
considenng a finite number of infinite strips embedded in an infinite dielectric cylinder of 3
rectangular cross section.

A third area of research is that of curved surfaces. A natural starting place would be 3
the development of a formal notation capable of describing the shape, position, orientation,

and curvature of an element in three-dimensional space, much like the notation used in the I
geometrical theory of diffraction. Such a formalism might also be applied to other

deterministic scattering problems as well.

Finally, a fourth area of research that could be carried out in the context of periodic 3
surfaces is the development of a systematic design procedure. Most, if not all, of the

programs used in practice are analysis tools, The designer is given a set of specifications, 3
and then, based on his experience, he analyzes tens or hundreds of cases to find one that

comes close to meeting the specifications. Depending on his level of expertise, this process

could be very time-consuming - and the intuition he gains is not easily passed on to his

colleagues.

The alternative would be to automate this procedure in an optimization program. The 3
inputs to the program would be the design specifications: resonant frequency, bandwidth,

polarization of the field (linear or circular), etc. Beginning at an initial design, the program I
would be designed to incrementally vary the adjustable parameters of the surface until the 3
design goals were achieved. The output of the program would be the number of I
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conducting layers, the lattice, the shapes and sizes of the elements, and the thicknesses and

I permittivities of the dielectric layers.

Predicting the future is a tricky business, but the problems discussed here are

potentially interesting and are motivated by real applications in existing or proposed

* systems.

I
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